Gut microbiome diversity as adjuvant marker for immune function

  • Mahdaleny Master's Programme in Biomedical Sciences Faculty of Medicine Universitas Indonesia
  • Febriana Catur Iswanti Departement of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia, Jakarta 10430 https://orcid.org/0000-0001-7593-2716
Keywords: gastrointestinal tract, biofilms, extracellular matrix, biopsy, mucins

Abstract

The gastrointestinal (GI) tract represents our most intimate contact with the external environment. The GI tract responsible for extracting the appropriate nutrients we need to thrive, maintaining an appropriate balance of helpful and harmful microbes, and acting as a conduit for waste removal. In essence, the extracellular matrix of gut mucosal biofilm is a complex network of microbes and their secretions, as well as the host's secretions and signals (mainly mucus/mucin). Mucin, bacterial polysaccharides, and protein combine to form a unique mucosal biofilm that serves as a home for a variety of commensal and pathogenic organisms in the host. Maintaining proper mucosal barrier function is vital for both GI and systemic health. The lumen of the gut contains numerous entities that should never reach the bloodstream or lymphatic system. The mucosal barrier's integrity is maintained by a single layer of tightly fitted columnar epithelial, and more than 70% of the immune system components are closely associated with the GI tract.

References

Miller J, Cantor A, Zachariah P, Ahn D, Martinez M, Margolis KG. Gastrointestinal symptoms as a major presentation component of a novel multisystem inflammatory syndrome in children that is related to coronavirus disease 2019: a single center experience of 44 cases. Gastroenterology. 2020;159: 1571-1574. https://doi.org/10.1053/j.gastro.2020.05.079

Jiao Y, Wu L, Huntington ND, Zhang X. Crosstalk between gut microbiota and innate immunity and its implication in autoimmune diseases. Front Immunol. 2020;11: 282. https://doi.org/10.3389/fimmu.2020.00282

Salvo Romero E, Alonso Cotoner C, Pardo Camacho C, Casado Bedmar M, Vicario M. The intestinal barrier function and its involvement in digestive disease. Rev Esp Enferm Dig. 2015;107: 686-696. https://doi.org/10.17235/reed.2015.3846/2015

Carrillo JLM, García FPC, Coronado OG, García MAM, Cordero JFC. Physiology and Pathology of Innate Immune Response Against Pathogens. In: Rezaei N, editor. Physiology and Pathology of Immunology. Rijeka: IntechOpen; 2017. p. Ch. 6. https://doi.org/10.5772/intechopen.70556

Commission E, Centre JR. The human gut microbiota : overview and analysis of the current scientific knowledge and possible impact on healthcare and well-being. Publications Office; 2018. doi:doi/10.2760/17381

Theis KR, Dheilly NM, Klassen JL, Brucker RM, Baines JF, Bosch TCG, et al. Getting the hologenome concept right: an eco-evolutionary framework for hosts and their microbiomes. mSystems. 2016;1: e00028-16. https://doi.org/10.1128/mSystems.00028-16

Rodríguez JM, Murphy K, Stanton C, Ross RP, Kober OI, Juge N, et al. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Health Dis. 2015;26: 26050. https://doi.org/10.3402/mehd.v26.26050

Munyaka PM, Khafipour E, Ghia J-E. External influence of early childhood establishment of gut microbiota and subsequent health implications. Front Pediatr. 2014;2: 109. https://doi.org/10.3389/fped.2014.00109

Mu Q, Swartwout BK, Edwards M, Zhu J, Lee G, Eden K, et al. Regulation of neonatal IgA production by the maternal microbiota. Proceedings of the National Academy of Sciences. 2021;118: e2015691118. https://doi.org/10.1038/ijo.2013.49

Jakobsson HE, Abrahamsson TR, Jenmalm MC, Harris K, Quince C, Jernberg C, et al. Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by caesarean section. Gut. 2014;63: 559-566. https://doi.org/10.1136/gutjnl-2012-303249

Blustein J, Attina T, Liu M, Ryan AM, Cox LM, Blaser MJ, et al. Association of caesarean delivery with child adiposity from age 6 weeks to 15 years. Int J Obes. 2013;37: 900-906. https://doi.org/10.1038/ijo.2013.49

Sanidad KZ, Zeng MY. Neonatal gut microbiome and immunity. Curr Opin Microbiol. 2020;56: 30-37. https://doi.org/10.1016/j.mib.2020.05.011

Allaire JM, Crowley SM, Law HT, Chang S-Y, Ko H-J, Vallance BA. The intestinal epithelium: central coordinator of mucosal immunity. Trends Immunol. 2018;39: 677-696. https://doi.org/10.1016/j.it.2018.04.002

Clevers HC, Bevins CL. Paneth Cells: Maestros of the Small Intestinal Crypts. Annu Rev Physiol. 2013;75: 289-311. https://doi.org/10.1146/annurev-physiol-030212-183744

Bonis V, Rossell C, Gehart H. The intestinal epithelium-fluid fate and rigid structure from crypt bottom to villus tip. Front Cell Dev Biol. 2021; 1222. https://doi.org/10.3389/fcell.2021.661931

Reynolds A, Wharton N, Parris A, Mitchell E, Sobolewski A, Kam C, et al. Canonical Wnt signals combined with suppressed TGFβ/BMP pathways promote renewal of the native human colonic epithelium. Gut. 2014;63: 610-621. https://doi.org/10.1136/gutjnl-2012-304067

Lee YM, Ayres JS. Decoding the intestinal epithelium cell by cell. Nat Immunol. 2018;19: 7-9. https://doi.org/10.1038/s41590-017-0011-0

Johansson ME v, Hansson GC. Immunological aspects of intestinal mucus and mucins. Nat Rev Immunol. 2016;16: 639-649. https://doi.org/10.1038/nri.2016.88

Ohno H. Intestinal M cells. The Journal of Biochemistry. 2016;159: 151-160. https://doi.org/10.1093/jb/mvv121

Howitt MR, Lavoie S, Michaud M, Blum AM, Tran S v, Weinstock J v, et al. Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut. Science (1979). 2016;351: 1329-1333. https://doi.org/10.1126/science.aaf1648

Pott J, Hornef M. Innate immune signalling at the intestinal epithelium in homeostasis and disease. EMBO Rep. 2012;13: 684-698. https://doi.org/10.1038/embor.2012.96

Durack J, Lynch S v. The gut microbiome: relationships with disease and opportunities for therapy. Journal of Experimental Medicine. 2019;216: 20-40. https://doi.org/10.1084/jem.20180448

Kayisoglu Ö, Schlegel N, Bartfeld S. Gastrointestinal epithelial innate immunity-regionalization and organoids as new model. J Mol Med. 2021;99: 517-530. https://doi.org/10.1007/s00109-021-02043-9

Yoo JY, Groer M, Dutra SVO, Sarkar A, McSkimming DI. Gut microbiota and immune system interactions. Microorganisms. 2020;8: 1587. https://doi.org/10.3390/microorganisms8101587

Jinnohara T, Kanaya T, Hase K, Sakakibara S, Kato T, Tachibana N, et al. IL-22BP dictates characteristics of Peyer's patch follicle-associated epithelium for antigen uptake. Journal of Experimental Medicine. 2017;214: 1607-1618. https://doi.org/10.1084/jem.20160770

da Silva C, Wagner C, Bonnardel J, Gorvel J-P, Lelouard H. The Peyer's patch mononuclear phagocyte system at steady state and during infection. Front Immunol. 2017;8: 1254. https://doi.org/10.3389/fimmu.2017.01254

Huus KE, Petersen C, Finlay BB. Diversity and dynamism of IgA− microbiota interactions. Nat Rev Immunol. 2021;21: 514-525. https://doi.org/10.1038/s41577-021-00506-1

Nicoletti C. Unsolved mysteries of intestinal M cells. Gut. 2000;47: 735-739. https://doi.org/10.1136/gut.47.5.735

Sakhon OS, Ross B, Gusti V, Pham AJ, Vu K, Lo DD. M cell-derived vesicles suggest a unique pathway for trans-epithelial antigen delivery. Tissue Barriers. 2015;3: e1004975. https://doi.org/10.1080/21688370.2015.1004975

Knoop KA, McDonald KG, McCrate S, McDole JR, Newberry RD. Microbial sensing by goblet cells controls immune surveillance of luminal antigens in the colon. Mucosal Immunol. 2015;8: 198-210. https://doi.org/10.1038/mi.2014.58

McDole JR, Wheeler LW, McDonald KG, Wang B, Konjufca V, Knoop KA, et al. Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. Nature. 2012;483: 345-349. https://doi.org/10.1038/nature10863

Birchenough GMH, Nyström EEL, Johansson ME v, Hansson GC. A sentinel goblet cell guards the colonic crypt by triggering Nlrp6-dependent Muc2 secretion. Science (1979). 2016;352: 1535-1542. https://doi.org/10.1126/science.aaf7419

Haber AL, Biton M, Rogel N, Herbst RH, Shekhar K, Smillie C, et al. A single-cell survey of the small intestinal epithelium. Nature. 2017;551: 333-339. https://doi.org/10.1038/nature24489

Zhang Z, Zhu Q, Chen J, Khattak RH, Li Z, Teng L, et al. Insights into the composition of gut microbiota in response to environmental temperature: The case of the Mongolia racerunner (Eremias argus). Glob Ecol Conserv. 2022;36: e02125. https://doi.org/10.1016/j.gecco.2022.e02125

Rinninella E, Raoul P, Cintoni M, Franceschi F, Miggiano GAD, Gasbarrini A, et al. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms. 2019;7: 14. https://doi.org/10.3390/microorganisms7010014

Leite GGS, Weitsman S, Parodi G, Celly S, Sedighi R, Sanchez M, et al. Mapping the Segmental Microbiomes in the Human Small Bowel in Comparison with Stool: A REIMAGINE Study. Dig Dis Sci. 2020;65: 2595-2604. https://doi.org/10.1007/s10620-020-06173-x

Schreurs RRCE, Baumdick ME, Sagebiel AF, Kaufmann M, Mokry M, Klarenbeek PL, et al. Human Fetal TNF-α-Cytokine-Producing CD4+ Effector Memory T Cells Promote Intestinal Development and Mediate Inflammation Early in Life. Immunity. 2019;50: 462-476.e8. https://doi.org/10.1016/j.immuni.2018.12.010

Evans JM, Morris LS, Marchesi JR. The gut microbiome: the role of a virtual organ in the endocrinology of the host. Journal of Endocrinology. 2013;218: R37-R47. https://doi.org/10.1530/JOE-13-0131

Zuo T, Zhang F, Lui GCY, Yeoh YK, Li AYL, Zhan H, et al. Alterations in Gut Microbiota of Patients With COVID-19 During Time of Hospitalization. Gastroenterology. 2020;159: 944-955.e8. https://doi.org/10.1053/j.gastro.2020.05.048

Maynard CL, Elson CO, Hatton RD, Weaver CT. Reciprocal interactions of the intestinal microbiota and immune system. Nature. 2012;489: 231-241. https://doi.org/10.1038/nature11551

Gensollen T, Iyer SS, Kasper DL, Blumberg RS. How colonization by microbiota in early life shapes the immune system. Science (1979). 2016;352: 539-544. https://doi.org/10.1126/science.aad9378

Belkaid Y, Hand TW. Role of the Microbiota in Immunity and Inflammation. Cell. 2014;157: 121-141. https://doi.org/10.1016/j.cell.2014.03.011

Frosali S, Pagliari D, Gambassi G, Landolfi R, Pandolfi F, Cianci R. How the Intricate Interaction among Toll-Like Receptors, Microbiota, and Intestinal Immunity Can Influence Gastrointestinal Pathology. Piccirillo CA, editor. J Immunol Res. 2015;2015: 489821. https://doi.org/10.1155/2015/489821

Cristofori F, Dargenio VN, Dargenio C, Miniello VL, Barone M, Francavilla R. Anti-Inflammatory and Immunomodulatory Effects of Probiotics in Gut Inflammation: A Door to the Body. Front Immunol. 2021;12. https://doi.org/10.3389/fimmu.2021.578386

Kogut MH, Lee A, Santin E. Microbiome and pathogen interaction with the immune system. Poult Sci. 2020;99: 1906-1913. https://doi.org/10.1016/j.psj.2019.12.011

Pietrzak B, Tomela K, Olejnik-Schmidt A, Mackiewicz A, Schmidt M. Secretory IgA in intestinal mucosal secretions as an adaptive barrier against microbial cells. Int J Mol Sci. 2020;21: 9254. https://doi.org/10.3390/ijms21239254

Stagg AJ. Intestinal dendritic cells in health and gut inflammation. Front Immunol. 2018;9: 2883. https://doi.org/10.3389/fimmu.2018.02883

Xue J, Ajuwon KM, Fang R. Mechanistic insight into the gut microbiome and its interaction with host immunity and inflammation. Animal Nutrition. 2020;6: 421-428. https://doi.org/10.1016/j.aninu.2020.05.007

Tezuka H, Ohteki T. Regulation of IgA production by intestinal dendritic cells and related cells. Front Immunol. 2019;10: 1891. https://doi.org/10.3389/fimmu.2019.01891

Bunker JJ, Flynn TM, Koval JC, Shaw DG, Meisel M, McDonald BD, et al. Innate and Adaptive Humoral Responses Coat Distinct Commensal Bacteria with Immunoglobulin A. Immunity. 2015;43: 541-553. https://doi.org/10.1016/j.immuni.2015.08.007

Bunker JJ, Bendelac A. IgA Responses to Microbiota. Immunity. 2018;49: 211-224. https://doi.org/10.1016/j.immuni.2018.08.011

Okumura R, Takeda K. Maintenance of intestinal homeostasis by mucosal barriers. Inflamm Regen. 2018;38: 5. https://doi.org/10.1186/s41232-018-0063-z

Cani PD, Knauf C. How gut microbes talk to organs: The role of endocrine and nervous routes. Mol Metab. 2016;5: 743-752. https://doi.org/10.1016/j.molmet.2016.05.011

Bashiardes S, Shapiro H, Rozin S, Shibolet O, Elinav E. Non-alcoholic fatty liver and the gut microbiota. Mol Metab. 2016;5: 782-794. https://doi.org/10.1016/j.molmet.2016.06.003

Scheithauer TPM, Dallinga-Thie GM, de Vos WM, Nieuwdorp M, van Raalte DH. Causality of small and large intestinal microbiota in weight regulation and insulin resistance. Mol Metab. 2016;5: 759-770. https://doi.org/10.1016/j.molmet.2016.06.002

McKenney PT, Pamer EG. From Hype to Hope: The Gut Microbiota in Enteric Infectious Disease. Cell. 2015;163: 1326-1332. https://doi.org/10.1016/j.cell.2015.11.032

Bauer MA, Kainz K, Carmona-Gutierrez D, Madeo F. Microbial wars: competition in ecological niches and within the microbiome. Microbial cell. 2018;5: 215. https://doi.org/10.15698/mic2018.05.628

Kamada N, Chen GY, Inohara N, Núñez G. Control of pathogens and pathobionts by the gut microbiota. Nat Immunol. 2013;14: 685-690. https://doi.org/10.1038/ni.2608

Fusco A, Savio V, Perfetto B, Mattina R, Donnarumma G. Antimicrobial peptide human β-defensin-2 improves in vitro cellular viability and reduces pro-inflammatory effects induced by enteroinvasive Escherichia coli in Caco-2 cells by inhibiting invasion and virulence factors' expression. Front Cell Infect Microbiol. 2022; 1515. https://doi.org/10.3389/fcimb.2022.1009415

Buffie CG, Pamer EG. Microbiota-mediated colonization resistance against intestinal pathogens. Nat Rev Immunol. 2013;13: 790-801. https://doi.org/10.1038/nri3535

Coyte KZ, Schluter J, Foster KR. The ecology of the microbiome: Networks, competition, and stability. Science (1979). 2015;350: 663-666. https://doi.org/10.1126/science.aad2602

Wang G. Human antimicrobial peptides and proteins. Pharmaceuticals. 2014;7: 545-594. https://doi.org/10.3390/ph7050545

Deriu E, Liu JZ, Pezeshki M, Edwards RA, Ochoa RJ, Contreras H, et al. Probiotic Bacteria Reduce Salmonella Typhimurium Intestinal Colonization by Competing for Iron. Cell Host Microbe. 2013;14: 26-37. https://doi.org/10.1016/j.chom.2013.06.007

Gomes MM, Valentin S, François T. Short-Chain Fatty Acids as a Potential Treatment for Infections: a Closer Look at the Lungs. Infect Immun. 2021;89: e00188-21. https://doi.org/10.1128/IAI.00188-21

Baptista AP, Olivier BJ, Goverse G, Greuter M, Knippenberg M, Kusser K, et al. Colonic patch and colonic SILT development are independent and differentially regulated events. Mucosal Immunol. 2013;6: 511-521. https://doi.org/10.1038/mi.2012.90

Fawley J, Gourlay DM. Intestinal alkaline phosphatase: a summary of its role in clinical disease. Journal of Surgical Research. 2016;202: 225-234. https://doi.org/10.1016/j.jss.2015.12.008

McClure R, Massari P. TLR-dependent human mucosal epithelial cell responses to microbial pathogens. Front Immunol. 2014;5: 386. https://doi.org/10.3389/fimmu.2014.00386

Huhta H, Helminen O, Kauppila JH, Salo T, Porvari K, Saarnio J, et al. The Expression of Toll-like Receptors in Normal Human and Murine Gastrointestinal Organs and the Effect of Microbiome and Cancer. Journal of Histochemistry & Cytochemistry. 2016;64: 470-482. https://doi.org/10.1369/0022155416656154

DeGruttola AK, Low D, Mizoguchi A, Mizoguchi E. Current Understanding of Dysbiosis in Disease in Human and Animal Models. Inflamm Bowel Dis. 2016;22: 1137-1150. https://doi.org/10.1097/MIB.0000000000000750

Kashyap PC, Reigstad CS, Loftus E v. Role of diet and gut microbiota in management of inflammatory bowel disease in an Asian migrant. Journal of Allergy and Clinical Immunology. 2013;132: 250. https://doi.org/10.1016/j.jaci.2013.05.021

Glassner KL, Abraham BP, Quigley EMM. The microbiome and inflammatory bowel disease. Journal of Allergy and Clinical Immunology. 2020;145: 16-27. https://doi.org/10.1016/j.jaci.2019.11.003

Scheithauer TPM, Rampanelli E, Nieuwdorp M, Vallance BA, Verchere CB, van Raalte DH, et al. Gut microbiota as a trigger for metabolic inflammation in obesity and type 2 diabetes. Front Immunol. 2020; 2546. https://doi.org/10.3389/fimmu.2020.571731

Velloso LA, Folli F, Saad MJ. TLR4 at the Crossroads of Nutrients, Gut Microbiota, and Metabolic Inflammation. Endocr Rev. 2015;36: 245-271. https://doi.org/10.1210/er.2014-1100

Luche E, Cousin B, Garidou L, Serino M, Waget A, Barreau C, et al. Metabolic endotoxemia directly increases the proliferation of adipocyte precursors at the onset of metabolic diseases through a CD14-dependent mechanism. Mol Metab. 2013;2: 281-291. https://doi.org/10.1016/j.molmet.2013.06.005

Elias-Oliveira J, Leite JA, Pereira ÍS, Guimarães JB, Manso GM da C, Silva JS, et al. NLR and intestinal dysbiosis-associated inflammatory illness: drivers or dampers? Front Immunol. 2020;11: 1810. https://doi.org/10.3389/fimmu.2020.01810

de Souza PR, Guimarães FR, Sales-Campos H, Bonfá G, Nardini V, Chica JEL, et al. Absence of NOD2 receptor predisposes to intestinal inflammation by a deregulation in the immune response in hosts that are unable to control gut dysbiosis. Immunobiology. 2018;223: 577-585. https://doi.org/10.1016/j.imbio.2018.07.003

Patente TA, Pinho MP, Oliveira AA, Evangelista GCM, Bergami-Santos PC, Barbuto JAM. Human dendritic cells: their heterogeneity and clinical application potential in cancer immunotherapy. Front Immunol. 2019;9: 3176. https://doi.org/10.3389/fimmu.2018.03176

Owen JL, Mohamadzadeh M. Microbial activation of gut dendritic cells and the control of mucosal immunity. Journal of Interferon & Cytokine Research. 2013;33: 619-631. https://doi.org/10.1089/jir.2013.0046

David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505: 559-563. https://doi.org/10.1038/nature12820

Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, le Chatelier E, et al. Dietary intervention impact on gut microbial gene richness. Nature. 2013;500: 585-588. https://doi.org/10.1038/nature12480

Burr AHP, Bhattacharjee A, Hand TW. Nutritional Modulation of the Microbiome and Immune Response. The Journal of Immunology. 2020;205: 1479-1487.https://doi.org/10.4049/jimmunol.2000419

Ali I, Liu K, Long D, Faisal S, Hilal MG, Ali I, et al. Ramadan fasting leads to shifts in human gut microbiota structured by dietary composition. Front Microbiol. 2021;12: 642999. https://doi.org/10.3389/fmicb.2021.642999

Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014;11: 506-514. https://doi.org/10.1038/nrgastro.2014.66

Bourassa MW, Alim I, Bultman SJ, Ratan RR. Butyrate, neuroepigenetics and the gut microbiome: Can a high fiber diet improve brain health? Neurosci Lett. 2016;625: 56-63. https://doi.org/10.1016/j.neulet.2016.02.009

Aya V, Flórez A, Perez L, Ramírez JD. Association between physical activity and changes in intestinal microbiota composition: A systematic review. PLoS One. 2021;16: e0247039. https://doi.org/10.1371/journal.pone.0247039

Tilg H, Zmora N, Adolph TE, Elinav E. The intestinal microbiota fuelling metabolic inflammation. Nat Rev Immunol. 2020;20: 40-54. https://doi.org/10.1038/s41577-019-0198-4

Published
2022-06-21
How to Cite
Mahdaleny, & Iswanti, F. C. (2022). Gut microbiome diversity as adjuvant marker for immune function. Acta Biochimica Indonesiana, 5(1), 80. https://doi.org/10.32889/actabioina.80