Gut microbiome diversity as adjuvant marker for immune function

  • Mahdaleny Master's Programme in Biomedical Sciences Faculty of Medicine Universitas Indonesia
  • Febriana Catur Iswanti Departement of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia, Jakarta 10430
Keywords: gastrointestinal tract, biofilms, extracellular matrix, biopsy, mucins


The gastrointestinal (GI) tract represents our most intimate contact with the external environment. The GI tract responsible for extracting the appropriate nutrients we need to thrive, maintaining an appropriate balance of helpful and harmful microbes, and acting as a conduit for waste removal. In essence, the extracellular matrix of gut mucosal biofilm is a complex network of microbes and their secretions, as well as the host's secretions and signals (mainly mucus/mucin). Mucin, bacterial polysaccharides, and protein combine to form a unique mucosal biofilm that serves as a home for a variety of commensal and pathogenic organisms in the host. Maintaining proper mucosal barrier function is vital for both GI and systemic health. The lumen of the gut contains numerous entities that should never reach the bloodstream or lymphatic system. The mucosal barrier's integrity is maintained by a single layer of tightly fitted columnar epithelial, and more than 70% of the immune system components are closely associated with the GI tract.


Abul K. Abbas, Andrew H. Lichtman SP. Functions and Disorders of the Immune System 6th Edition. Fifth Edit. CANADA: Elsevier Inc.; 2016.

Harmsen HJM, de Goffau MC. JRC F7 - Knowledge for Health and Consumer Safety, The Human Gut Microbiota: Overview and analysis of the current scientific knowledge and possible impact on healthcare and well-being. EUR 29240 EN, Publications Office of the European Union, Luxembourg. 2016.

Theis KR, Dheilly NM, Klassen JL, Brucker RM, Baines JF, Bosch TCG, et al. Getting the Hologenome Concept Right: an Eco-Evolutionary Framework for Hosts and Their Microbiomes. mSystems. 2016;1: 1-6.

Rodríguez JM, Murphy K, Stanton C, Ross RP, Kober OI, Juge N, et al. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Heal Dis. 2015;26: 1-17.

Munyaka PM, Khafipour E, Ghia JE. External influence of early childhood establishment of gut microbiota and subsequent health implications. Front Pediatr. 2014;2: 1-9.

Huurre A, Kalliomäki M, Rautava S, Rinne M, Salminen S, Isolauri E. Mode of delivery - Effects on gut microbiota and humoral immunity. Neonatology. 2008;93: 236-240.

Jakobsson HE, Abrahamsson TR, Jenmalm MC, Harris K, Quince C, Jernberg C, et al. Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by Caesarean section. Gut. 2014;63: 559-566.

Blustein J, Attina T, Liu M, Ryan AM, Cox LM, Blaser MJ, et al. Association of caesarean delivery with child adiposity from age 6 weeks to 15 years. Int J Obes. 2013;37: 900-906.

Mulder IE, Schmidt B, Lewis M, Delday M, Stokes CR, Bailey M, et al. Restricting microbial exposure in early life negates the immune benefits associated with gut colonization in environments of high microbial diversity. PLoS One. 2011;6.

Allaire JM, Crowley SM, Law HT, Chang SY, Ko HJ, Vallance BA. The Intestinal Epithelium: Central Coordinator of Mucosal Immunity. Trends Immunol. 2018;39: 677-696.

Spence JR, Lauf R, Shroyer NF. Vertebrate intestinal endoderm development. Dev Dyn. 2011;240: 501-520.

Crosnier C, Stamataki D, Lewis J. Organizing cell renewal in the intestine: Stem cells, signals and combinatorial control. Nat Rev Genet. 2006;7: 349-359.

Reynolds A, Wharton N, Parris A, Mitchell E, Sobolewski A, Kam C, et al. Canonical Wnt signals combined with suppressed TGF$β$/BMP pathways promote renewal of the native human colonic epithelium. Gut. 2014;63: 610-621.

Lee YM, Ayres JS. Decoding the intestinal epithelium cell by cell news-and-views. Nat Immunol. 2018;19: 7-9.

Johansson MEV, Hansson GC. Immunological aspects of intestinal mucus and mucins. Nat Rev Immunol. 2016;16(10):639-49.

Ohno H. Intestinal M cells. J Biochem. 2015;159: 151-160.

Howitt MR, Lavoie S, Michaud M, Blum AM, Tran S V, Weinstock J V, et al. Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut. Science (80- ). 2016;351: 1329-1333.

Pott J, Hornef M. Innate immune signalling at the intestinal epithelium in homeostasis and disease. EMBO Rep. 2012;13: 684-698.

Durack J, Lynch S V. The gut microbiome: Relationships with disease and opportunities for therapy. J Exp Med. 2019;216: 20-40.

Kayisoglu Ö, Schlegel N, Bartfeld S. Gastrointestinal epithelial innate immunity-regionalization and organoids as new model. J Mol Med. 2021;99: 517-530.

Neutra MR, Mantis NJ, Kraehenbuhl JP. Collaboration of epithelial cells with organized mucosal lymphoid tissues. Nat Immunol. 2001;2: 1004-1009.

Jinnohara T, Kanaya T, Hase K, Sakakibara S, Kato T, Tachibana N, et al. IL-22BP dictates characteristics of Peyer's patch follicleassociated epithelium for antigen uptake. J Exp Med. 2017;214: 1607-1618.

Da Silva C, Wagner C, Bonnardel J, Gorvel JP, Lelouard H. The Peyer's patch mononuclear phagocyte system at steady state and during infection. Front Immunol. 2017;8.

Macpherson AJ, Hunziker L, McCoy K, Lamarre A. IgA responses in the intestinal mucosa against pathogenic and non-pathogenic microorganisms. Microbes Infect. 2001;3: 1021-1035.

Alpan O, Rudomen G, Matzinger P. The Role of Dendritic Cells, B Cells, and M Cells in Gut-Oriented Immune Responses. J Immunol. 2001;166: 4843-4852.

Sakhony OS, Rossy B, Gusti V, Pham AJ, Vu K, Lo DD. M cell-derived vesicles suggest a unique pathway for trans-epithelial antigen delivery. Tissue Barriers. 2015;3: 1-2.

Roemer, Emily J., West, Kesley L., Northrup, Jessica B., Iverson, Jana M. Microbial Sensing by Goblet Cells Controls Immune Surveillance of Luminal Antigens in the Colon. Physiol Behav. 2016;176: 139-148. doi:10.1038/mi.2014.58.Microbial

McDole JR, Wheeler LW, McDonald KG, Wang B, Konjufca V, Knoop KA, et al. Goblet cells deliver luminal anrigen to CD103+ DCs in the small intestine. Nature. 2012;483: 345-349.

Birchenough GMH, Nystrom EEL, Johansson ME V, Hansson GC. A sentinel goblet cell guards the colonic crypt by triggering Nlrp6-dependent Muc2 secretion. Science (80- ). 2016;352: 1535-1542.

Haber AL, Biton M, Rogel N, Herbst RH, Smillie C, Burgin G, et al. A single-cell survey of the small intestinal epithelium. 2018;551: 333-339.

Sekirov I, Russell SL, Caetano M Antunes L, Finlay BB. Gut microbiota in health and disease. Physiol Rev. 2010;90: 859-904.

Tap J, Mondot S, Levenez F, Pelletier E, Caron C, Furet JP, et al. Towards the human intestinal microbiota phylogenetic core. Environ Microbiol. 2009;11: 2574-2584.

Frank DN, St. Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A. 2007;104: 13780-13785.

Cani PD, Liu XX, Dai M, Ma YY, Zhao N, Zhang HH, et al. Human Fetal TNF-$α$-Cytokine-Producing CD4 + Effector Memory T Cells Promote Intestinal Development and Mediate Inflammation Early in Life. Curr Opin Microbiol. 2020;10: 1-12.

Bocci V. The neglected organ: Bacterial flora has a crucial immunostimulatory role. Perspect Biol Med. 1992;35: 251-260.

Zuo T, Zhang F, Lui GCY, Yeoh YK, Li AYL, Zhan H, et al. Alterations in Gut Microbiota of Patients With COVID-19 During Time of Hospitalization. Gastroenterology. 2020;159: 944--955.e8.

Maynard CL, Elson CO, Hatton RD, Weaver CT. Reciprocal interactions of the intestinal microbiota and immune system. Nature. 2012;489: 231-241.

Gensollen T, Iyer SS, Kasper DL, Blumberg RS, Medical H, ... How colonization by microbiota in early life shapes the immune 1. Gensollen T, Iyer SS, Kasper DL, Blumberg RS, Medical H. How colonization by microbiota in early life shapes the immune system. Science. 2016;352(6285):539-544. doi:10.1126/science.aad9378. Science. 2016;352: 539-544.

Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014;157: 121-141.

Frosali S, Pagliari D, Gambassi G, Landolfi R, Pandolfi F, Cianci R. How the Intricate Interaction among Toll-Like Receptors, Microbiota, and Intestinal Immunity Can Influence Gastrointestinal Pathology. J Immunol Res. 2015;2015.

Cristofori F, Dargenio VN, Dargenio C, Miniello VL, Barone M, Francavilla R. Anti-Inflammatory and Immunomodulatory Effects of Probiotics in Gut Inflammation: A Door to the Body. Front Immunol. 2021;12: 1-21.

Macpherson AJ, Uhr T. Induction of Protective IgA by Intestinal Dendritic Cells Carrying Commensal Bacteria. Science (80- ). 2004;303: 1662-1665.

Kaetzel CS. Cooperativity among secretory IgA, the polymeric immunoglobulin receptor, and the gut microbiota promotes host-microbial mutualism. Immunol Lett. 2014;162(0): 10–21.

Peterson DA, McNulty NP, Guruge JL, Gordon JI. IgA Response to Symbiotic Bacteria as a Mediator of Gut Homeostasis. Cell Host Microbe. 2007;2: 328-339.

Hapfelmeier S, Lawson MAE, Slack E, Kirundi JK, Stoel M, Heikenwalder M, et al. Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses. Science (80- ). 2010;328: 1705-1709.

Tezuka H, Ohteki T. Regulation of IgA production by intestinal dendritic cells and related cells. Front Immunol. 2019;10: 1-15.

Bunker JJ, Flynn TM, Koval JC, Shaw DG, Meisel M, Mcdonald BD, et al. Innate and adaptive humoral responses coat distinct commensal bacteria with immunoglobulin A HHS Public Access commensal bacteria by multiple layers of humoral immunity and reveal a specialized function of the B1b lineage in TI mucosal IgA responses. Immunity. 2015;43: 541-553.

Bunker JJ, Bendelac A. IgA Responses to Microbiota. Immunity. 2018;49: 211-224.

Okumura R, Takeda K. Maintenance of intestinal homeostasis by mucosal barriers. Inflamm Regen. 2018;38: 1-8.

Cani PD, Knauf C. How gut microbes talk to organs: The role of endocrine and nervous routes. Mol Metab. 2016;5: 743-752.

Bashiardes S, Shapiro H, Rozin S, Shibolet O, Elinav E. Non-alcoholic fatty liver and the gut microbiota. Mol Metab. 2016;5: 782-794.

Scheithauer TPM, Dallinga-Thie GM, de Vos WM, Nieuwdorp M, van Raalte DH. Causality of small and large intestinal microbiota in weight regulation and insulin resistance. Mol Metab. 2016;5: 759-770.

Mckenney PT, Pamer EG, Sloan M, Cancer K, Sloan M, Cancer K, et al. From hype to hope_the gut microbiota in enteric infectious disease. 2016;163: 1326-1332.

Chow J, Tang H, Mazmanian SK. Pathobionts of the gastrointestinal microbiota and inflammatory disease. Curr Opin Immunol. 2011;23: 473-480.

Kamada N, Chen GY, Inohara N, Núñez G. Control of pathogens and pathobionts by the gut microbiota. Nat Immunol. 2013;14: 685-690.

Wehkamp J, Wehkamp J, Meissner BW, Meissner BW, Schlee M, Schlee M, et al. NF-kB- and AP-1-Mediated Induction of Human Beta Defensin-2 in Intestinal Epithelial Cells by. Society. 2004;72: 5750-5758.

Manuscript A. Microbiota-mediated colonization resistance against intestinal pathogens. 2014;13: 790-801.

Sonnenburg JL, Chen CTL, Gordon JI. Genomic and metabolic studies of the impact of probiotics on a model gut symbiont and host. PLoS Biol. 2006;4: 2213-2226.

Cash HL, Whitham C V., Behrendt CL, Hooper L V. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science (80- ). 2006;313: 1126-1130.

Contreras H, Libby SJ, Fang FC, Raffatellu M. Probiotic bacteria reduce salmonella typhimurium intestinal colonization by competing for iron. 2014;14: 26-37.

Vinolo MAR, Rodrigues HG, Nachbar RT, Curi R. Regulation of inflammation by short chain fatty acids. Nutrients. 2011;3: 858-876.

Halle S, Bumann D, Herbrand H, Willer Y, Dähne S, Förster R, et al. Solitary intestinal lymphoid tissue provides a productive port of entry for Salmonella enterica serovar Typhimurium. Infect Immun. 2007;75: 1577-1585.

Geddes K, Philpott DJ. A New Role for Intestinal Alkaline Phosphatase in Gut Barrier Maintenance. Gastroenterology. 2008;135: 8-12.

Ortega-Cava CF, Ishihara S, Rumi MAK, Kawashima K, Ishimura N, Kazumori H, et al. Strategic Compartmentalization of Toll-Like Receptor 4 in the Mouse Gut. J Immunol. 2003;170: 3977-3985.

Melmed G, Thomas LS, Lee N, Tesfay SY, Lukasek K, Michelsen KS, et al. Human Intestinal Epithelial Cells Are Broadly Unresponsive to Toll-Like Receptor 2-Dependent Bacterial Ligands: Implications for Host-Microbial Interactions in the Gut. J Immunol. 2003;170: 1406-1415.

Degruttola AK, Low D, Mizoguchi A, Mizoguchi E. Current understanding of dysbiosis in disease in human and animal models. Inflamm Bowel Dis. 2016;22: 1137-1150.

Kashyap PC, Reigstad CS, Loftus E V. Role of diet and gut microbiota in management of inflammatory bowel disease in an Asian migrant. J Allergy Clin Immunol. 2013;132: 250--250.e5.

Glassner KL, Abraham BP, Quigley EMM. The microbiome and inflammatory bowel disease. J Allergy Clin Immunol. 2020;145: 16-27.

Poggi M, Bastelica D, Gual P, Iglesias MA, Gremeaux T, Knauf C, et al. C3H/HeJ mice carrying a toll-like receptor 4 mutation are protected against the development of insulin resistance in white adipose tissue in response to a high-fat diet. Diabetologia. 2007;50: 1267-1276.

Zabarenko LM. Metabolic Endotoxemia Initiates Obesity and Insulin Resistance. Encycl Stress. 2007;56: 386-389.

Luche E, Cousin B, Garidou L, Serino M, Waget A, Barreau C, et al. Metabolic endotoxemia directly increases the proliferation of adipocyte precursors at the onset of metabolic diseases through a CD14-dependent mechanism. Mol Metab. 2013;2: 281-291.

Elias-Oliveira J, Leite JA, Pereira ÍS, Guimarães JB, Manso GM da C, Silva JS, et al. NLR and Intestinal Dysbiosis-Associated Inflammatory Illness: Drivers or Dampers? Front Immunol. 2020;11: 1-9.

de Souza PR, Guimarães FR, Sales-Campos H, Bonfá G, Nardini V, Chica JEL, et al. Absence of NOD2 receptor predisposes to intestinal inflammation by a deregulation in the immune response in hosts that are unable to control gut dysbiosis. Immunobiology. 2018;223: 577-585.

Patente TA, Pinho MP, Oliveira AA, Evangelista GCM, Bergami-Santos PC, Barbuto JAM. Human dendritic cells: Their heterogeneity and clinical application potential in cancer immunotherapy. Front Immunol. 2019;10: 1-18.

Owen JL, Mohamadzadeh M. Microbial activation of gut Dendritic cells and the control of mucosal immunity. J Interf Cytokine Res. 2013;33: 619-631.

David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505: 559-563.

Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, Le Chatelier E, et al. Dietary intervention impact on gut microbial gene richness. Nature. 2013;500: 585-588.

Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science (80- ). 2011;334: 105-108.

Ali I, Liu K, Long D, Faisal S, Hilal MG, Ali I, et al. Ramadan Fasting Leads to Shifts in Human Gut Microbiota Structured by Dietary Composition. Front Microbiol. 2021;12: 1-15.

Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al. Expert consensus document: The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014;11: 506-514.

Cho. Butyrate, Neuroepigenetics and the Gut Microbiome: Can a High Fiber Diet Improve Brain Health? Physiol Behav. 2016;176: 100-106.

Aya V, Flórez A, Perez L, Ramírez JD. Association between physical activity and changes in intestinal microbiota composition: A systematic review. PLoS One. 2021;16: 1-21.

Tilg H, Zmora N, Adolph TE, Elinav E. The intestinal microbiota fuelling metabolic inflammation. Nat Rev Immunol. 2020;20: 40-54.

How to Cite
Mahdaleny, & Iswanti, F. C. (2022). Gut microbiome diversity as adjuvant marker for immune function. Acta Biochimica Indonesiana, 5(1), 80.