In silico recombinant plasmid design of pHA171 with phdABCD insertion for ethidium bromide degradation

  • Muhammad Ilham Fahri Department of Agricultural Product Technology, Faculty of Agricultural Technology, Brawijaya University, Malang, Indonesia
  • Rabiah Musfira Alatiffa Department of Agricultural Product Technology, Faculty of Agricultural Technology, Brawijaya University, Malang, Indonesia
  • Sania Isma Yanti Department of Agricultural Product Technology, Faculty of Agricultural Technology, Brawijaya University, Malang, Indonesia
  • Indira Prakoso Department of Agricultural Product Technology, Faculty of Agricultural Technology, Brawijaya University, Malang, Indonesia
  • Alysha Naomi Mashitah Department of Agricultural Product Technology, Faculty of Agricultural Technology, Brawijaya University, Malang, Indonesia
Keywords: bioinformatic, bioremediation, Escherichia coli, ethidium bromide, phenanthridine

Abstract

Background: Ethidium bromide is a common reagent that is used in nucleic acid staining. However, ethidium bromide has toxic and carcinogenic properties that are harmful to the environment. Phenanthrene dioxygenase (encoded by phdA, phdB, phdC, and phdD genes) in Nocardioides sp. KP7 can oxidize the phenanthridine structure aim to eliminate carcinogenic properties.

Objective: This study aims to visualize and predict the structure, active site, and characteristics of the phenanthrene dioxygenase using bioinformatics tools.

Methods: Plasmid design were prepared by inserting genes of interest phdA, phdB, phdC, and phdD from the NCBI database. Furthermore, several protein analysis tools were used for structure visualization, active site enzyme improvement, and protein characteristic of phenanthrene dioxygenase.

Results: The prediction results found that phenanthrene dioxygenase reacts with the ethidium bromide substrate through the interaction of Fe3+ ions with water. The solubility level of phenanthrene dioxygenase protein is 0.404, suggesting that the protein has low solubility. The protein isoelectric point (pI) is between 5.17 to 5.36, and the protein molecular weight is 121.143 kDa.

Conclusion: In silico analysis has supported that recombinant plasmid met characteristics for the construct which consists of gene interest and protein library.

References

Motohashi K. Development of highly sensitive and low-cost DNA agarose gel electrophoresis detection systems, and evaluation of non-mutagenic and loading dye-type DNA-staining reagents. PLoS One. 2019;14: e0222209. doi:10.1371/journal.pone.0222209

https://doi.org/10.1371/journal.pone.0222209

Saeidnia S, Abdollahi M. Are other fluorescent tags used instead of ethidium bromide safer? Daru. 2013;21: 71. doi:10.1186/2008-2231-21-71

https://doi.org/10.1186/2008-2231-21-71

Li Z, Chang P-H, Jiang W-T, Liu Y. Enhanced removal of ethidium bromide (EtBr) from aqueous solution using rectorite. J Hazard Mater. 2020;384: 121254. doi:10.1016/j.jhazmat.2019.121254

https://doi.org/10.1016/j.jhazmat.2019.121254

Youssef A, El-Ella Hussein Gad A, Ghannam H, Zedan A, Aboulthana W, Al-Sherbini A-S. Synthesis of high efficient CS/PVDC/TiO2-Au nanocomposites for photocatalytic degradation of carcinogenic ethidium bromide in sunlight. Egypt J Chem. 2020;63: 5-9. doi:10.21608/ejchem.2020.21987.2313

https://doi.org/10.21608/ejchem.2020.21987.2313

Sharma B, Dangi AK, Shukla P. Contemporary enzyme based technologies for bioremediation: A review. J Environ Manage. 2018;210: 10-22. doi:10.1016/j.jenvman.2017.12.075

https://doi.org/10.1016/j.jenvman.2017.12.075

Jia X, He Y, Jiang D, Liu C, Lu W. Construction and analysis of an engineered Escherichia coli-Pseudomonas aeruginosa co-culture consortium for phenanthrene bioremoval. Biochem Eng J. 2019;148: 214-223. doi:10.1016/j.bej.2019.05.010

https://doi.org/10.1016/j.bej.2019.05.010

Wu Y, Xu Y, Zhou N. A newly defined dioxygenase system from Mycobacterium vanbaalenii PYR-1 endowed with an enhanced activity of dihydroxylation of high-molecular-weight polyaromatic hydrocarbons. Front Environ Sci Eng. 2020;14: 14. doi:10.1007/s11783-019-1193-5

https://doi.org/10.1007/s11783-019-1193-5

Chen H, Huang R, Zhang Y-HP. Systematic comparison of co-expression of multiple recombinant thermophilic enzymes in Escherichia coli BL21(DE3). Appl Microbiol Biotechnol. 2017;101: 4481-4493. doi:10.1007/s00253-017-8206-8

https://doi.org/10.1007/s00253-017-8206-8

Vandemoortele G, Eyckerman S, Gevaert K. Pick a tag and explore the functions of your pet protein. Trends Biotechnol. 2019;37: 1078-1090. doi:10.1016/j.tibtech.2019.03.016

https://doi.org/10.1016/j.tibtech.2019.03.016

Shindo K, Ohnishi Y, Chun HK, Takahashi H, Hayashi M, Saito A, et al. Oxygenation reactions of various tricyclic fused aromatic compounds using Escherichia coli and Streptomyces lividans transformants carrying several arene dioxygenase genes. Biosci Biotechnol Biochem. 2001;65: 2472-2481. doi:10.1271/bbb.65.2472

https://doi.org/10.1271/bbb.65.2472

Saito A, Iwabuchi T, Harayama S. A novel phenanthrene dioxygenase from Nocardioides sp. Strain KP7: expression in Escherichia coli. J Bacteriol. 2000;182: 2134-2141. doi:10.1128/JB.182.8.2134-2141.2000

https://doi.org/10.1128/JB.182.8.2134-2141.2000

Wu W, Wang Z, Cong P, Li T. Accurate prediction of protein relative solvent accessibility using a balanced model. BioData Min. 2017;10: 1. doi:10.1186/s13040-016-0121-5

https://doi.org/10.1186/s13040-016-0121-5

Pathak S, Agarwal AV, Pandey VC. Phytoremediation-a holistic approach for remediation of heavy metals and metalloids. Bioremediation of Pollutants. Elsevier; 2020. pp. 3-16. doi:10.1016/B978-0-12-819025-8.00001-6

https://doi.org/10.1016/B978-0-12-819025-8.00001-6

Omasits U, Ahrens CH, Müller S, Wollscheid B. Protter: interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics. 2014;30: 884-886. doi:10.1093/bioinformatics/btt607

https://doi.org/10.1093/bioinformatics/btt607

Niwa T, Ying B-W, Saito K, Jin W, Takada S, Ueda T, et al. Bimodal protein solubility distribution revealed by an aggregation analysis of the entire ensemble of Escherichia coli proteins. Proc Natl Acad Sci USA. 2009;106: 4201-4206. doi:10.1073/pnas.0811922106

https://doi.org/10.1073/pnas.0811922106

Wainwright M. Dyes, trypanosomiasis and DNA: a historical and critical review. Biotech Histochem. 2010;85: 341-354. doi:10.3109/10520290903297528

https://doi.org/10.3109/10520290903297528

Samanta SK, Chakraborti AK, Jain RK. Degradation of phenanthrene by different bacteria: evidence for novel transformation sequences involving the formation of 1-naphthol. Appl Microbiol Biotechnol. 1999;53: 98-107. doi:10.1007/s002530051621

https://doi.org/10.1007/s002530051621

Tu M, Cheng S, Lu W, Du M. Advancement and prospects of bioinformatics analysis for studying bioactive peptides from food-derived protein: Sequence, structure, and functions. TrAC Trends in Analytical Chemistry. 2018;105: 7-17. doi:10.1016/j.trac.2018.04.005

https://doi.org/10.1016/j.trac.2018.04.005

Bartocci E, Lió P. Computational modeling, formal analysis, and tools for systems biology. PLoS Comput Biol. 2016;12: e1004591. doi:10.1371/journal.pcbi.1004591

https://doi.org/10.1371/journal.pcbi.1004591

Published
2021-08-21
How to Cite
Fahri, M. I., Alatiffa, R. M., Yanti, S. I., Prakoso, I., & Mashitah, A. N. (2021). In silico recombinant plasmid design of pHA171 with phdABCD insertion for ethidium bromide degradation . Acta Biochimica Indonesiana, 4(1), 7. https://doi.org/10.32889/actabioina.7