Concentration-dependent photostability of phycocyanin under UV-A and UV-B irradiation
Abstract
Background: Indonesia's tropical location results in intense UV exposure, necessitating effective photoprotective agents. Phycocyanin from Spirulina platensis shows promise as a natural sunscreen ingredient, yet systematic evaluation of its photostability across concentrations remains limited.
Objectives: To evaluate phycocyanin stability and antioxidant activity under UV-A and UV-B irradiation across different concentrations.
Methods: Phycocyanin (200, 250, 300, and 350 ppm) was exposed to UV-A (365 nm, 2.8 mW/cm²) and UV-B (312 nm, 3.2 mW/cm²) irradiation for up to 30 minutes. Pigment concentration and DPPH radical scavenging activity were measured using UV-Vis spectrophotometry.
Results: Phycocyanin exhibited concentration-dependent stability, with 300–350 ppm demonstrating optimal performance. UV-B caused greater degradation than UV-A, with concentration losses of 14.19–43.43 ppm (UV-B) versus 6.85–16.63 ppm (UV-A) after 30 minutes. Antioxidant activity decreased minimally under UV-A (≤1.85%) but more substantially under UV-B (≤1.97%). The 350 ppm concentration showed highest stability and antioxidant retention (98.9% and 98.0%, respectively).
Conclusion: The 300–350 ppm range represents the optimal concentration for photoprotective applications, supporting phycocyanin's potential as a natural sunscreen ingredient.
References
Hamouda SA, Alshawish NK, Abdalla YK, Ibrahim MK. Ultraviolet radiation: Health risks and benefits. Saudi J Eng Technol. 2022;7: 533-541. https://doi.org/10.36348/sjet.2022.v07i10.001
Wei M, He X, Liu N, Deng H. Role of reactive oxygen species in ultraviolet-induced photodamage of the skin. Cell Div. 2024;19: 1. https://doi.org/10.1186/s13008-024-00107-z
Ci ażyńska M, Olejniczak-Staruch Irmina and Sobolewska-Sztychny D, Narbutt J, Skibińska M, Lesiak A. Ultraviolet radiation and chronic inflammation-molecules and mechanisms involved in skin carcinogenesis: A narrative review. Life (Basel). 2021;11: 326. https://doi.org/10.3390/life11040326
Ansary TM, Hossain MR, Kamiya K, Komine M, Ohtsuki M. Inflammatory molecules associated with ultraviolet radiation-mediated skin aging. Int J Mol Sci. 2021;22: 3974. https://doi.org/10.3390/ijms22083974
Yardman-Frank JM, Fisher DE. Skin pigmentation and its control: From ultraviolet radiation to stem cells. Exp Dermatol. 2021;30: 560-571. https://doi.org/10.1111/exd.14260
Avianka V, Mardhiani YD, Santoso R. Studi pustaka peningkatan nilai SPF (sun protection factor) pada tabir Surya dengan penambahan bahan Alam. J Sains Dan Kesehat. 2022;4: 79-88. https://doi.org/10.25026/jsk.v4i1.664
Wang L, Lee W, Oh JY, Cui YR, Ryu B, Jeon Y-J. Protective effect of sulfated polysaccharides from Celluclast-assisted extract of Hizikia fusiforme against ultraviolet B-induced skin damage by regulating NF-κB, AP-1, and MAPKs signaling pathways in vitro in human dermal fibroblasts. Mar Drugs. 2018;16: 239. https://doi.org/10.3390/md16070239
Nahhas AF, Abdel-Malek ZA, Kohli Indermeet and Braunberger TL, Lim HW, Hamzavi IH. The potential role of antioxidants in mitigating skin hyperpigmentation resulting from ultraviolet and visible light-induced oxidative stress. Photodermatol Photoimmunol Photomed. 2019;35: 420-428. https://doi.org/10.1111/phpp.12423
Boo YC. Emerging strategies to protect the skin from ultraviolet rays using plant-derived materials. Antioxidants (Basel). 2020;9: 637. https://doi.org/10.3390/antiox9070637
Andriani F, Hendrayanti D, Yasman Y. Exploring microalgae diversity in Indonesia: Harnessing potential for lead bioremediation. Bioeduscience. 2024;8: 26-42. https://doi.org/10.22236/jbes/13225
Gamal R, Shreadah MA. Marine microalgae and their industrial biotechnological applications: A review. J Genet Eng Biotechnol. 2024;22: 100407. https://doi.org/10.1016/j.jgeb.2024.100407
Sanger G, Wonggo D, Montolalu LADY, Dotulong V. Pigments constituents, phenolic content and antioxidant activity of brown seaweed Sargassum sp. IOP Conf Ser Earth Environ Sci. 2022;1033: 12057. https://doi.org/10.1088/1755-1315/1033/1/012057
Ramaraj S, Ramalingam R, Abeer H, Elsayed F AA. Microalgae metabolites: A rich source for food and medicine. Saudi J Biol Sci. 2019;26: 709-722. https://doi.org/10.1016/j.sjbs.2017.11.003
Umi Zakiyah, Mulyanto, Lucia Tri Suwanti, Mochamad Donny Koerniawan, Eko Agus Suyono, Arief Budiman, et al. Diversity and distribution of microalgae in coastal areas of East Java, Indonesia. Biodiversitas. 2020;21. https://doi.org/10.13057/biodiv/d210340
Costa JAV, Barbieri Moro Gisele Medianeira and de Moraes Vaz Batista Filgueira D, Corsini Emanuela and Bertolin TE. The potential ofSpirulinaand its bioactive metabolites as ingested agents for skin care. Ind Biotechnol (New Rochelle N Y). 2017;13: 244-252. https://doi.org/10.1089/ind.2017.0010
Renugadevi K, Valli Nachiyar C, Sowmiya P, Sunkar S. Antioxidant activity of phycocyanin pigment extracted from marine filamentous cyanobacteria Geitlerinema sp TRV57. Biocatal Agric Biotechnol. 2018;16: 237-242. https://doi.org/10.1016/j.bcab.2018.08.009
Fernandes R, Campos J, Serra M, Fidalgo J, Almeida H, Casas A, et al. Exploring the benefits of phycocyanin: From Spirulina cultivation to its widespread applications. Pharmaceuticals (Basel). 2023;16: 592. https://doi.org/10.3390/ph16040592
Safari R, Amiri RZ, Esmaeilzadeh Kenari R. Antioxidant and antibacterial activities of C-phycocyanin from common name Spirulina platensis. Iran J Fish Sci. 2020;19: 1911-1927. doi:10.22092/ijfs.2019.118129
Fernández-Rojas B, Hernández-Juárez J, Pedraza-Chaverri J. Nutraceutical properties of phycocyanin. J Funct Foods. 2014;11: 375-392. https://doi.org/10.1016/j.jff.2014.10.011
Morya S, Kumar Chattu V, Khalid W, Zubair Khalid M, Siddeeg A. Potential protein phycocyanin: an overview on its properties, extraction, and utilization. Int J Food Prop. 2023;26: 3160-3176. https://doi.org/10.1080/10942912.2023.2271686
Rastogi RP, Sonani RR, Madamwar D. Effects of PAR and UV radiation on the structural and functional integrity of phycocyanin, phycoerythrin and allophycocyanin isolated from the marine Cyanobacterium Lyngbya sp. A09DM. Photochem Photobiol. 2015;91: 837-844. https://doi.org/10.1111/php.12449
Mapoung S, Arjsri P, Thippraphan Pilaiporn and Semmarath W, Yodkeeree S, Chiewchanvit S, Piyamongkol W, et al. Photochemoprotective effects of Spirulina platensis extract against UVB irradiated human skin fibroblasts. S Afr J Bot. 2020;130: 198-207. https://doi.org/10.1016/j.sajb.2020.01.001
Munawaroh HSH, Gumilar GG, Alifia CR, Marthania M, Stellasary Bianca and Yuliani G, Wulandari AP, et al. Photostabilization of phycocyanin from Spirulina platensis modified by formaldehyde. Process Biochem. 2020;94: 297-304. https://doi.org/10.1016/j.procbio.2020.04.021
Goyudianto BA, Meliana C, Meliana C, Muliani D, J J, Sadeli YE, et al. Stability of Phycocyanin, Phycoerythrin, and Astaxanthin from Algae Towards Temperature, pH, Light, and Oxygen as a Commercial Natural Food Colorant. Indonesian Journal of Life Sciences. 2021; 28-42. https://doi.org/10.54250/ijls.v3i2.126
Huo Y, Hou X, Yu Y, Wen X, Ding Y, Li Y, et al. Improving the thermal and oxidative stability of food-grade phycocyanin from Arthrospira platensis by addition of saccharides and sugar alcohols. Foods. 2022;11: 1752. https://doi.org/10.3390/foods11121752
Soares B dos S, Diniz RR, Paiva JP de, Pádula M de, Santos EP dos, Monteiro MS de S de B. In vitro approaches to antioxidant screening for the development of a sunscreen formulation. Braz J Pharm Sci. 2023;59. https://doi.org/10.1590/s2175-97902023e23228
Munawaroh HSH, Darojatun K, Gumilar GG, Aisyah S and Wulandari AP. Characterization of phycocyanin fromSpirulina fusiformisand its thermal stability. J Phys Conf Ser. 2018;1013: 12205. https://doi.org/10.1088/1742-6596/1013/1/012205
Brand-Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology. 1995;28: 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
Hirosawa T, Miyachi S. Effects of long-wavelength ultraviolet (UV-A) radiation on the growth of Anacystis nidulans. Plant Sci Lett. 1983;28: 291-298. https://doi.org/10.1016/S0304-4211(83)80021-2
Jang YA, Kim BA. Protective effect of Spirulina-derived C-phycocyanin against ultraviolet B-induced damage in HaCaT cells. Medicina (Kaunas). 2021;57: 273. https://doi.org/10.3390/medicina57030273
Schmalwieser AW, Casale GR, Colosimo A, Schmalwieser SS, Siani AM. Review on occupational personal solar UV exposure measurements. Atmosphere (Basel). 2021;12: 142. https://doi.org/10.3390/atmos12020142
Bernerd F, Passeron T, Castiel I, Marionnet C. The damaging effects of long UVA (UVA1) rays: A major challenge to preserve skin health and integrity. Int J Mol Sci. 2022;23: 8243. https://doi.org/10.3390/ijms23158243
Kim Y-H, Cho A, Kwon S-A, Kim M, Song M, Han HW, et al. Potential photoprotective effect of dietary corn silk extract on ultraviolet B-induced skin damage. Molecules. 2019;24: 2587. https://doi.org/10.3390/molecules24142587
Margiati D, Ramdani D, Wulandari AP. Comparative Study of Antioxidant Phycocyanin Extracts Activity between S. platensis with S. fusiformis Using DPPH Method. Indonesian Journal of Pharmaceutical Science and Technology. 2019;6: 52. https://doi.org/10.24198/ijpst.v6i2.11883
Chentir I, Hamdi M, Li S, Doumandji A, Markou G, Nasri M. Stability, bio-functionality and bio-activity of crude phycocyanin from a two-phase cultured Saharian Arthrospira sp. strain. Algal Res. 2018;35: 395-406. https://doi.org/10.1016/j.algal.2018.09.013
Alotaiby S, Zhao X, Boesch C, Sergeeva NN. Sustainable approach towards isolation of photosynthetic pigments from Spirulina and the assessment of their prooxidant and antioxidant properties. Food Chem. 2024;436: 137653. https://doi.org/10.1016/j.foodchem.2023.137653
Mundo-Franco Z, Luna-Herrera J, Castañeda-Sánchez JI, Serrano-Contreras JI, Rojas-Franco P, Blas-Valdivia V, et al. C-phycocyanin prevents oxidative stress, inflammation, and lung remodeling in an ovalbumin-induced rat asthma model. Int J Mol Sci. 2024;25: 7031. https://doi.org/10.3390/ijms25137031
Marzorati S, Schievano A, Idà Antonio and Verotta L. Carotenoids, chlorophylls and phycocyanin from Spirulina: supercritical CO2 and water extraction methods for added value products cascade. Green Chem. 2020;22: 187-196. https://doi.org/10.1039/C9GC03292D
Zhang Z, Cho S, Dadmohammadi Y, Li Ying and Abbaspourrad A. Improvement of the storage stability of C-phycocyanin in beverages by high-pressure processing. Food Hydrocoll. 2021;110: 106055. https://doi.org/10.1016/j.foodhyd.2020.106055
Li Y, Zhang Z, Abbaspourrad A. Improved thermal stability of phycocyanin under acidic conditions by forming soluble complexes with polysaccharides. Food Hydrocoll. 2021;119: 106852. https://doi.org/10.1016/j.foodhyd.2021.106852
Zhang S, Zhang Z, Dadmohammadi Y, Li Y, Jaiswal A, Abbaspourrad A. Whey protein improves the stability of C-phycocyanin in acidified conditions during light storage. Food Chem. 2021;344: 128642. https://doi.org/10.1016/j.foodchem.2020.128642
Yuan B, Li Z, Shan H, Dashnyam B, Xu X, McClements DJ, et al. A review of recent strategies to improve the physical stability of phycocyanin. Curr Res Food Sci. 2022;5: 2329-2337. https://doi.org/10.1016/j.crfs.2022.11.019
Pez Jaeschke D, Rocha Teixeira I, Damasceno Ferreira Marczak L, Domeneghini Mercali G. Phycocyanin from Spirulina: A review of extraction methods and stability. Food Res Int. 2021;143: 110314. https://doi.org/10.1016/j.foodres.2021.110314
İlter I, Akyıl S, Demirel Z, Koç M, Conk-Dalay M, Kaymak-Ertekin F. Optimization of phycocyanin extraction from Spirulina platensis using different techniques. Journal of Food Composition and Analysis. 2018;70: 78-88. https://doi.org/10.1016/j.jfca.2018.04.007
Copyright (c) 2025 Authors

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
