Concentration-dependent photostability of phycocyanin under UV-A and UV-B irradiation

Keywords: antioxidant, phycocyanin, photostability, sunscreen, UV radiation

Abstract

Background: Indonesia's tropical location results in intense UV exposure, necessitating effective photoprotective agents. Phycocyanin from Spirulina platensis shows promise as a natural sunscreen ingredient, yet systematic evaluation of its photostability across concentrations remains limited.

Objectives: To evaluate phycocyanin stability and antioxidant activity under UV-A and UV-B irradiation across different concentrations.

Methods: Phycocyanin (200, 250, 300, and 350 ppm) was exposed to UV-A (365 nm, 2.8 mW/cm²) and UV-B (312 nm, 3.2 mW/cm²) irradiation for up to 30 minutes. Pigment concentration and DPPH radical scavenging activity were measured using UV-Vis spectrophotometry.

Results: Phycocyanin exhibited concentration-dependent stability, with 300–350 ppm demonstrating optimal performance. UV-B caused greater degradation than UV-A, with concentration losses of 14.19–43.43 ppm (UV-B) versus 6.85–16.63 ppm (UV-A) after 30 minutes. Antioxidant activity decreased minimally under UV-A (≤1.85%) but more substantially under UV-B (≤1.97%). The 350 ppm concentration showed highest stability and antioxidant retention (98.9% and 98.0%, respectively).

Conclusion: The 300–350 ppm range represents the optimal concentration for photoprotective applications, supporting phycocyanin's potential as a natural sunscreen ingredient.

References

Hamouda SA, Alshawish NK, Abdalla YK, Ibrahim MK. Ultraviolet radiation: Health risks and benefits. Saudi J Eng Technol. 2022;7: 533-541. https://doi.org/10.36348/sjet.2022.v07i10.001

Wei M, He X, Liu N, Deng H. Role of reactive oxygen species in ultraviolet-induced photodamage of the skin. Cell Div. 2024;19: 1. https://doi.org/10.1186/s13008-024-00107-z

Ci ażyńska M, Olejniczak-Staruch Irmina and Sobolewska-Sztychny D, Narbutt J, Skibińska M, Lesiak A. Ultraviolet radiation and chronic inflammation-molecules and mechanisms involved in skin carcinogenesis: A narrative review. Life (Basel). 2021;11: 326. https://doi.org/10.3390/life11040326

Ansary TM, Hossain MR, Kamiya K, Komine M, Ohtsuki M. Inflammatory molecules associated with ultraviolet radiation-mediated skin aging. Int J Mol Sci. 2021;22: 3974. https://doi.org/10.3390/ijms22083974

Yardman-Frank JM, Fisher DE. Skin pigmentation and its control: From ultraviolet radiation to stem cells. Exp Dermatol. 2021;30: 560-571. https://doi.org/10.1111/exd.14260

Avianka V, Mardhiani YD, Santoso R. Studi pustaka peningkatan nilai SPF (sun protection factor) pada tabir Surya dengan penambahan bahan Alam. J Sains Dan Kesehat. 2022;4: 79-88. https://doi.org/10.25026/jsk.v4i1.664

Wang L, Lee W, Oh JY, Cui YR, Ryu B, Jeon Y-J. Protective effect of sulfated polysaccharides from Celluclast-assisted extract of Hizikia fusiforme against ultraviolet B-induced skin damage by regulating NF-κB, AP-1, and MAPKs signaling pathways in vitro in human dermal fibroblasts. Mar Drugs. 2018;16: 239. https://doi.org/10.3390/md16070239

Nahhas AF, Abdel-Malek ZA, Kohli Indermeet and Braunberger TL, Lim HW, Hamzavi IH. The potential role of antioxidants in mitigating skin hyperpigmentation resulting from ultraviolet and visible light-induced oxidative stress. Photodermatol Photoimmunol Photomed. 2019;35: 420-428. https://doi.org/10.1111/phpp.12423

Boo YC. Emerging strategies to protect the skin from ultraviolet rays using plant-derived materials. Antioxidants (Basel). 2020;9: 637. https://doi.org/10.3390/antiox9070637

Andriani F, Hendrayanti D, Yasman Y. Exploring microalgae diversity in Indonesia: Harnessing potential for lead bioremediation. Bioeduscience. 2024;8: 26-42. https://doi.org/10.22236/jbes/13225

Gamal R, Shreadah MA. Marine microalgae and their industrial biotechnological applications: A review. J Genet Eng Biotechnol. 2024;22: 100407. https://doi.org/10.1016/j.jgeb.2024.100407

Sanger G, Wonggo D, Montolalu LADY, Dotulong V. Pigments constituents, phenolic content and antioxidant activity of brown seaweed Sargassum sp. IOP Conf Ser Earth Environ Sci. 2022;1033: 12057. https://doi.org/10.1088/1755-1315/1033/1/012057

Ramaraj S, Ramalingam R, Abeer H, Elsayed F AA. Microalgae metabolites: A rich source for food and medicine. Saudi J Biol Sci. 2019;26: 709-722. https://doi.org/10.1016/j.sjbs.2017.11.003

Umi Zakiyah, Mulyanto, Lucia Tri Suwanti, Mochamad Donny Koerniawan, Eko Agus Suyono, Arief Budiman, et al. Diversity and distribution of microalgae in coastal areas of East Java, Indonesia. Biodiversitas. 2020;21. https://doi.org/10.13057/biodiv/d210340

Costa JAV, Barbieri Moro Gisele Medianeira and de Moraes Vaz Batista Filgueira D, Corsini Emanuela and Bertolin TE. The potential ofSpirulinaand its bioactive metabolites as ingested agents for skin care. Ind Biotechnol (New Rochelle N Y). 2017;13: 244-252. https://doi.org/10.1089/ind.2017.0010

Renugadevi K, Valli Nachiyar C, Sowmiya P, Sunkar S. Antioxidant activity of phycocyanin pigment extracted from marine filamentous cyanobacteria Geitlerinema sp TRV57. Biocatal Agric Biotechnol. 2018;16: 237-242. https://doi.org/10.1016/j.bcab.2018.08.009

Fernandes R, Campos J, Serra M, Fidalgo J, Almeida H, Casas A, et al. Exploring the benefits of phycocyanin: From Spirulina cultivation to its widespread applications. Pharmaceuticals (Basel). 2023;16: 592. https://doi.org/10.3390/ph16040592

Safari R, Amiri RZ, Esmaeilzadeh Kenari R. Antioxidant and antibacterial activities of C-phycocyanin from common name Spirulina platensis. Iran J Fish Sci. 2020;19: 1911-1927. doi:10.22092/ijfs.2019.118129

Fernández-Rojas B, Hernández-Juárez J, Pedraza-Chaverri J. Nutraceutical properties of phycocyanin. J Funct Foods. 2014;11: 375-392. https://doi.org/10.1016/j.jff.2014.10.011

Morya S, Kumar Chattu V, Khalid W, Zubair Khalid M, Siddeeg A. Potential protein phycocyanin: an overview on its properties, extraction, and utilization. Int J Food Prop. 2023;26: 3160-3176. https://doi.org/10.1080/10942912.2023.2271686

Rastogi RP, Sonani RR, Madamwar D. Effects of PAR and UV radiation on the structural and functional integrity of phycocyanin, phycoerythrin and allophycocyanin isolated from the marine Cyanobacterium Lyngbya sp. A09DM. Photochem Photobiol. 2015;91: 837-844. https://doi.org/10.1111/php.12449

Mapoung S, Arjsri P, Thippraphan Pilaiporn and Semmarath W, Yodkeeree S, Chiewchanvit S, Piyamongkol W, et al. Photochemoprotective effects of Spirulina platensis extract against UVB irradiated human skin fibroblasts. S Afr J Bot. 2020;130: 198-207. https://doi.org/10.1016/j.sajb.2020.01.001

Munawaroh HSH, Gumilar GG, Alifia CR, Marthania M, Stellasary Bianca and Yuliani G, Wulandari AP, et al. Photostabilization of phycocyanin from Spirulina platensis modified by formaldehyde. Process Biochem. 2020;94: 297-304. https://doi.org/10.1016/j.procbio.2020.04.021

Goyudianto BA, Meliana C, Meliana C, Muliani D, J J, Sadeli YE, et al. Stability of Phycocyanin, Phycoerythrin, and Astaxanthin from Algae Towards Temperature, pH, Light, and Oxygen as a Commercial Natural Food Colorant. Indonesian Journal of Life Sciences. 2021; 28-42. https://doi.org/10.54250/ijls.v3i2.126

Huo Y, Hou X, Yu Y, Wen X, Ding Y, Li Y, et al. Improving the thermal and oxidative stability of food-grade phycocyanin from Arthrospira platensis by addition of saccharides and sugar alcohols. Foods. 2022;11: 1752. https://doi.org/10.3390/foods11121752

Soares B dos S, Diniz RR, Paiva JP de, Pádula M de, Santos EP dos, Monteiro MS de S de B. In vitro approaches to antioxidant screening for the development of a sunscreen formulation. Braz J Pharm Sci. 2023;59. https://doi.org/10.1590/s2175-97902023e23228

Munawaroh HSH, Darojatun K, Gumilar GG, Aisyah S and Wulandari AP. Characterization of phycocyanin fromSpirulina fusiformisand its thermal stability. J Phys Conf Ser. 2018;1013: 12205. https://doi.org/10.1088/1742-6596/1013/1/012205

Brand-Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology. 1995;28: 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5

Hirosawa T, Miyachi S. Effects of long-wavelength ultraviolet (UV-A) radiation on the growth of Anacystis nidulans. Plant Sci Lett. 1983;28: 291-298. https://doi.org/10.1016/S0304-4211(83)80021-2

Jang YA, Kim BA. Protective effect of Spirulina-derived C-phycocyanin against ultraviolet B-induced damage in HaCaT cells. Medicina (Kaunas). 2021;57: 273. https://doi.org/10.3390/medicina57030273

Schmalwieser AW, Casale GR, Colosimo A, Schmalwieser SS, Siani AM. Review on occupational personal solar UV exposure measurements. Atmosphere (Basel). 2021;12: 142. https://doi.org/10.3390/atmos12020142

Bernerd F, Passeron T, Castiel I, Marionnet C. The damaging effects of long UVA (UVA1) rays: A major challenge to preserve skin health and integrity. Int J Mol Sci. 2022;23: 8243. https://doi.org/10.3390/ijms23158243

Kim Y-H, Cho A, Kwon S-A, Kim M, Song M, Han HW, et al. Potential photoprotective effect of dietary corn silk extract on ultraviolet B-induced skin damage. Molecules. 2019;24: 2587. https://doi.org/10.3390/molecules24142587

Margiati D, Ramdani D, Wulandari AP. Comparative Study of Antioxidant Phycocyanin Extracts Activity between S. platensis with S. fusiformis Using DPPH Method. Indonesian Journal of Pharmaceutical Science and Technology. 2019;6: 52. https://doi.org/10.24198/ijpst.v6i2.11883

Chentir I, Hamdi M, Li S, Doumandji A, Markou G, Nasri M. Stability, bio-functionality and bio-activity of crude phycocyanin from a two-phase cultured Saharian Arthrospira sp. strain. Algal Res. 2018;35: 395-406. https://doi.org/10.1016/j.algal.2018.09.013

Alotaiby S, Zhao X, Boesch C, Sergeeva NN. Sustainable approach towards isolation of photosynthetic pigments from Spirulina and the assessment of their prooxidant and antioxidant properties. Food Chem. 2024;436: 137653. https://doi.org/10.1016/j.foodchem.2023.137653

Mundo-Franco Z, Luna-Herrera J, Castañeda-Sánchez JI, Serrano-Contreras JI, Rojas-Franco P, Blas-Valdivia V, et al. C-phycocyanin prevents oxidative stress, inflammation, and lung remodeling in an ovalbumin-induced rat asthma model. Int J Mol Sci. 2024;25: 7031. https://doi.org/10.3390/ijms25137031

Marzorati S, Schievano A, Idà Antonio and Verotta L. Carotenoids, chlorophylls and phycocyanin from Spirulina: supercritical CO2 and water extraction methods for added value products cascade. Green Chem. 2020;22: 187-196. https://doi.org/10.1039/C9GC03292D

Zhang Z, Cho S, Dadmohammadi Y, Li Ying and Abbaspourrad A. Improvement of the storage stability of C-phycocyanin in beverages by high-pressure processing. Food Hydrocoll. 2021;110: 106055. https://doi.org/10.1016/j.foodhyd.2020.106055

Li Y, Zhang Z, Abbaspourrad A. Improved thermal stability of phycocyanin under acidic conditions by forming soluble complexes with polysaccharides. Food Hydrocoll. 2021;119: 106852. https://doi.org/10.1016/j.foodhyd.2021.106852

Zhang S, Zhang Z, Dadmohammadi Y, Li Y, Jaiswal A, Abbaspourrad A. Whey protein improves the stability of C-phycocyanin in acidified conditions during light storage. Food Chem. 2021;344: 128642. https://doi.org/10.1016/j.foodchem.2020.128642

Yuan B, Li Z, Shan H, Dashnyam B, Xu X, McClements DJ, et al. A review of recent strategies to improve the physical stability of phycocyanin. Curr Res Food Sci. 2022;5: 2329-2337. https://doi.org/10.1016/j.crfs.2022.11.019

Pez Jaeschke D, Rocha Teixeira I, Damasceno Ferreira Marczak L, Domeneghini Mercali G. Phycocyanin from Spirulina: A review of extraction methods and stability. Food Res Int. 2021;143: 110314. https://doi.org/10.1016/j.foodres.2021.110314

İlter I, Akyıl S, Demirel Z, Koç M, Conk-Dalay M, Kaymak-Ertekin F. Optimization of phycocyanin extraction from Spirulina platensis using different techniques. Journal of Food Composition and Analysis. 2018;70: 78-88. https://doi.org/10.1016/j.jfca.2018.04.007

Published
2025-12-05
How to Cite
Ulfah, N., Munawaroh, H. S. H., & Gumilar, G. G. (2025). Concentration-dependent photostability of phycocyanin under UV-A and UV-B irradiation. Acta Biochimica Indonesiana, 8(2), 226. https://doi.org/10.32889/actabioina.226