Age-dependent effects of Spirulina platensis on hepatic protein carbonylation in Wistar rats
Abstract
Background: Oxidative stress tends to rise as age increases, with the liver being notably affected. Changes in liver function are closely linked to oxidative stress, which targets hepatocytic proteins. Free radicals that attack the liver can cause damage to its proteins, which can be measured through carbonyl level. Spirulina platensis, is a blue-green sea algae which grow in sea waters throughout the world and have been consumed as antioxidants.
Objective: The objective of this study was to evaluate the effect of Spirulina platensis administration on carbonyl level in the liver tissues of young adult rats with different ages.
Methods: Male Wistar rats aged 8 weeks, 14 weeks, and 20 weeks were given 200 mg/kg BW S. platensis extract orally once a day for 29 days until aged 12 weeks, 18 weeks, and 24 weeks. Control group of each age (only given aquadest)
Results: The 12-week group given spirulina showed an increase in carbonyl level of 1,215 times compared to the control group. The 18-week group given spirulina showed a reduction in carbonyl level of 0.686 times compared to the control group. The 24-week group given spirulina showed an increase in carbonyl level of 0.924 times compared to the control group.
Conclusion: Spirulina platensis administration decreased the carbonyl level in 18-weeks and 24-weeks old rat compared to control group.
References
Statistik dan Portal Satudata Jakarta - Data Terbuka DKI Jakarta. 2019. Available: https://statistik.jakarta.go.id/statisik-penduduk-lanjut-usia-di-dki-jakarta-tahun-2019/
Pusat Data dan Informasi Kementrian Kesehatan RI. Infodatin lansia 2022. 2022.
Wu Q, Liu L, Miron A, Klímová B, Wan D, Kuča K. The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: an overview. Arch Toxicol. 2016;90: 1817-1840. https://doi.org/10.1007/s00204-016-1744-5
Li S, Tan H-Y, Wang N, Zhang Z-J, Lao L, Wong C-W, et al. The Role of Oxidative Stress and Antioxidants in Liver Diseases. Int J Mol Sci. 2015;16: 26087-26124. https://doi.org/10.3390/ijms161125942
Luceri C, Bigagli E, Femia A Pietro, Caderni G, Giovannelli L, Lodovici M. Aging related changes in circulating reactive oxygen species (ROS) and protein carbonyls are indicative of liver oxidative injury. Toxicol Rep. 2018;5: 141-145. https://doi.org/10.1016/j.toxrep.2017.12.017
Buwono NR, Nurhasanah RQ. Studi Pertumbuhan Populasi Spirulina sp. pada Skala Kultur yang Berbeda
[Study of Spirulina sp. Population Growth in The Different Culture Scale]. Jurnal Ilmiah Perikanan dan Kelautan. 2018;10: 26. https://doi.org/10.20473/jipk.v10i1.8516
Seyidoglu N, Inan S, Aydin C. A Prominent Superfood: Spirulina platensis. Superfood and Functional Food - The Development of Superfoods and Their Roles as Medicine. 2017. https://doi.org/10.5772/66118
Gabr GA, El-Sayed SM, Hikal MS. Antioxidant Activities of Phycocyanin: A Bioactive Compound from Spirulina platensis. J Pharm Res Int. 2020; 73-85. https://doi.org/10.9734/jpri/2020/v32i230407
Nyandra M, kartiko bambang, Arunngam P, pangkahila alex, Siswanto F. Overtraining induces oxidative stress-mediated renal damage in male Wistar rats. Transylvanian Review. 2018;26.
Nurmasitoh T, Utami SY, Kusumawardani E, Najmuddin AA, Fidianingsih I. Intermittent fasting decreases oxidative stress parameters in Wistar rats (Rattus norvegicus). Universa Medicina. 2018;37: 31. https://doi.org/10.18051/UnivMed.2018.v37.31-38
Di Majo D, Sardo P, Giglia G, Di Liberto V, Zummo FP, Zizzo MG, et al. Correlation of Metabolic Syndrome with Redox Homeostasis Biomarkers: Evidence from High-Fat Diet Model in Wistar Rats. Antioxidants. 2022;12: 89. https://doi.org/10.3390/antiox12010089
Ghasemi A, Jeddi S, Kashfi K. The laboratory rat: Age and body weight matter. EXCLI J. 2021; 1431-1445.
Prijanti AR, Nurhayati RW, Iswanti FC, Khoiriyah Z, Paramita R, Fadilah F. Java Sea Spirulina platensis chemical analysis and its protective ability against H2O2-exposed umbilical cord mesenchymal stem cells according to CD73, CD90, and CD105, viability, and HIF-1 alpha docking. J Appl Pharm Sci. 2022. https://doi.org/10.7324/JAPS.2022.120908
Paramita R, Purba HHS, Prijanti AR, Iswanti FC. Supplementation Impact of Spirulina platensis Ethanol Extract on Inflammatory Homeostasis Modulation of Rat Spleen at Different Ages. Hayati. 2024;31: 1231-1242. https://doi.org/10.4308/hjb.31.6.1231-1242
Pérez-Juárez A, Aguilar-Faisal JL, Posadas-Mondragón A, Santiago-Cruz JA, Barrientos-Alvarado C, Mojica-Villegas MA, et al. Effect of Spirulina (Formerly Arthrospira) Maxima against Ethanol-Induced Damage in Rat Liver. Applied Sciences. 2022;12: 8626. https://doi.org/10.3390/app12178626
Mudjihartini N, Prasetya SI, Sadikin M. Plasma Protein Profile of Lactating Women from Two Primary Health Centers in Jakarta, Indonesia. Rep Biochem Mol Biol. 2022;11: 209-215. https://doi.org/10.61186/rbmb.11.2.209
Dewi S, Sadikin M, Mulyawan W. Oxidative stress in the heart of rats exposed to acute intermittent hypobaric hypoxia. The Ukrainian Biochemical Journal. 2021;93: 68-74. https://doi.org/10.15407/ubj93.03.068
Kolawole TA, Ilochi ON, Oluwatayo BO, Chuemere AN, Dapper D V. Tissue Protein Carbonylation in Aging: A Strategic Analysis of Age-Related Protein Modification. J Adv Med Pharm Sci. 2019; 1-5. https://doi.org/10.9734/jamps/2019/v20i330111
Paramita R, Zaini TR. Spirulina platensis administration decreases malondialdehyde level. ICISBMB; 2024.
Akagawa M. Protein carbonylation: molecular mechanisms, biological implications, and analytical approaches. Free Radic Res. 2020;55: 1-37. https://doi.org/10.1080/10715762.2020.1851027
Neyrinck A, Taminiau B, Walgrave H, Daube G, Cani P, Bindels L, et al. Spirulina Protects against Hepatic Inflammation in Aging: An Effect Related to the Modulation of the Gut Microbiota? Nutrients. 2017;9: 633. https://doi.org/10.3390/nu9060633
Hoseini SM, Khosravi-Darani K, Mozafari MR. Nutritional and Medical Applications of Spirulina Microalgae. Mini-Reviews in Medicinal Chemistry. 2013;13: 1231-1237. https://doi.org/10.2174/1389557511313080009
Abdelkhalek NKM, Ghazy EW, Abdel-Daim MM. Pharmacodynamic interaction of Spirulina platensis and deltamethrin in freshwater fish Nile tilapia, Oreochromis niloticus: impact on lipid peroxidation and oxidative stress. Environmental Science and Pollution Research. 2014;22: 3023-3031. https://doi.org/10.1007/s11356-014-3578-0
K.G. MG, K US, R S, G.A. R. Supercritical CO2 extraction of functional compounds from Spirulina and their biological activity. J Food Sci Technol. 2014. https://doi.org/10.1007/s13197-014-1426-3
Ismail Md, Hossain MdF, Tanu AR, Shekhar HU. Effect of Spirulina Intervention on Oxidative Stress, Antioxidant Status, and Lipid Profile in Chronic Obstructive Pulmonary Disease Patients. Biomed Res Int. 2015;2015: 1-7. https://doi.org/10.1155/2015/486120
Paramita R, Zaini TR. Effect of Spirulina platensis administration on carbonyl level. ICISBMB; 2025.
Paramita NR, Mumtaz A. Effect of Spirulina platensis administration on liver catalase specific activities of various ages Wistar Rats. World Journal of Biology Pharmacy and Health Sciences. 2025;22: 283-289. https://doi.org/10.30574/wjbphs.2025.22.2.0477
Katsuura S, Imamura T, Bando N, Yamanishi R. β‐Carotene and β‐cryptoxanthin but not lutein evoke redox and immune changes in RAW264 murine macrophages. Mol Nutr Food Res. 2009;53: 1396-1405. https://doi.org/10.1002/mnfr.200800566
Copyright (c) 2025 Reni Paramita and Tina Rosiani Zaini

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
