Olive oil increase catalase activity and gluthatione peroxidase level in hyperglycemic rats

  • Ariani Zaltin Okvenda Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Andalas, Padang, West Sumatera, Indonesia
  • Eti Yerizel Department of Biochemistry, Faculty of Medicine, Universitas Andalas, Padang, West Sumatera, Indonesia https://orcid.org/0000-0002-7409-7752
  • Raveinal Department of Internal Medicine, Faculty of Medicine, Universitas Andalas, Padang, West Sumatera, Indonesia https://orcid.org/0009-0006-0841-1324
Keywords: Catalase Activity, Glutathione Peroxidase, Hyperglycemic, Olive Oil, Oxidants

Abstract

Background: Diabetes mellitus is the most common endocrine disease globally. Hyperglycemia in diabetes mellitus is known to trigger oxidative stress. The activity of glutathione peroxidase (GSH-Px) is decreased in diabetic conditions. Catalase activity acts as a defense system to prevent the formation of free radicals (oxidants) in the human body.

Objective: This study aimed to determine the effectiveness of olive oil antioxidants on catalase activity and GSH-Px levels in hyperglycemic rats.

Methods: Adult male Wistar rats were randomized into three groups (n: 8): untreated control (Control), alloxan-induced untreated (Alloxan), and alloxan-induced treatment (Treatment) of olive oil at 25 mL/day for 14 days. Catalase activities were measured using the spectrophotometry method, and GSH-Px levels were analyzed using an enzyme-linked immunosorbent assay (ELISA). 

Results: Administration of olive oil increased catalase activity compared to the untreated group in alloxan-induced rats. The average level of glutathione peroxidase was higher in the treatment group than in alloxan-induced rats.

Conclusion: Antioxidants in olive oil increased catalase activity and glutathione peroxidase levels in alloxan-induced hyperglycemic rats.

References

PERKENI. Pedoman Pengelolaan dan Pencegahan Diabetes Mellitus Tipe 2 Dewasa Di Indonesia 2021. Indonesia: PB PERKENI; 2021.

Ruderman N, Williamson J, Brownlee M. HyperGlycemia, Diabetes and Vascular Disease. Clinical P. New York: Springer New York; 2016.

Banday MZ, Sameer AS, Nissar S. Pathophysiology of diabetes: An overview. Avicenna J Med. 2020;10: 174-188. https://doi.org/10.4103/ajm.ajm_53_20

Kahraman C, Yümün G, Kahraman NK, Namdar ND, Cosgun S. Neutrophil-to-lymphocyte ratio in diabetes mellitus patients with and without diabetic foot ulcer. Eur J Med Sci. 2014;1: 8-13.https://doi.org/10.12973/ejms.2014.102p

International Diabetes Federation. IDF Diabetes Atlas, 9th edn. 2019.

International Diabetes Federation. IDF Diabetes Atlas 10th Edition. 2021.

Pusdatin Kemenkes. Infodatin Kesehatan Gigi Nasional September 2019. Pusdatin Kemenkes RI. 2019; 1-6.

Ávila‐Escalante ML, Coop‐Gamas F, Cervantes‐Rodríguez M, Méndez‐Iturbide D, Aranda‐González II. The effect of diet on oxidative stress and metabolic diseases-Clinically controlled trials. J Food Biochem. 2020;44: e13191. https://doi.org/10.1111/jfbc.13191

Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107: 1058-1070. https://doi.org/10.1161/CIRCRESAHA.110.223545

Pitocco D, Tesauro M, Alessandro R, Ghirlanda G, Cardillo C. Oxidative stress in diabetes: implications for vascular and other complications. Int J Mol Sci. 2013;14: 21525-21550. https://doi.org/10.3390/ijms141121525

Rendra E, Riabov V, Mossel DM, Sevastyanova T, Harmsen MC, Kzhyshkowska J. Reactive oxygen species (ROS) in macrophage activation and function in diabetes. Immunobiology. 2019;224: 242-253. https://doi.org/10.1016/j.imbio.2018.11.010

Riyanti H, Simanjutak SBI, Winarsi H. Aktivitas glutation peroksidase dan kadar gula darah tikus diabetes yang diberi ekstrak daun kapulaga (Amomum cardamomum). Scr Biol. 2014;1: 153-156. https://doi.org/10.20884/1.sb.2014.1.2.442

Sunaryo H, Rahmania RA, Dwitiyanti, Siska. Aktivitas antioksidan kombinasi ekstrak Jahe Gajah (Zingiber officinale Rosc.) dan zink berdasarkan pengukuran MDA, SOD dan katalase pada mencit hiperkolesterolemia dan hiperglikemia dengan penginduksi streptozotosin. J ilmu kefarmasian Indones. 2017;13: 187-193.

Oliveras-López M-J, Molina JJM, Mir MV, Rey EF, Martín F, de la Serrana HL-G. Extra virgin olive oil (EVOO) consumption and antioxidant status in healthy institutionalized elderly humans. Arch Gerontol Geriatr. 2013;57: 234-242. https://doi.org/10.1016/j.archger.2013.04.002

Astawan M. SehatD engan Rempah dan Bumbu Dapur. Jakarta: PT.Kompas Media Nusantara; 2016.

Ghanbari R, Anwar F, Alkharfy KM, Gilani A-H, Saari N. Valuable nutrients and functional bioactives in different parts of olive (Olea europaea L.)-a review. Int J Mol Sci. 2012;13: 3291-3340. https://doi.org/10.3390/ijms13033291

Imran M, Nadeem M, Gilani SA, Khan S, Sajid MW, Amir RM. Antitumor perspectives of oleuropein and its metabolite hydroxytyrosol: Recent updates. J Food Sci. 2018;83: 1781-1791. https://doi.org/10.1111/1750-3841.14198

Bilal RM, Liu C, Zhao H, Wang Y, Farag MR, Alagawany M, et al. Olive Oil: Nutritional Applications, Beneficial Health Aspects and its Prospective Application in Poultry Production. Front Pharmacol. 2021;12: 1-12. https://doi.org/10.3389/fphar.2021.723040

Yuniastuti A. Dasar Molekuler Glutation dan Perannya Sebagai Antioksidan. Semarang: FMIPA Unnes; 2016.

Firdaus KL. Pengaruh Pemberian Minyak ZAITUN Terhadap Kadar MDA Plasma Darah pada Tikus Putih Strain Wistar dengan Induksi Aloksan. 2017.

Meilina. Extra Virgin Olive Oil Menurunkan Kadar MDA pada Tikus Jantan Galur Wistar yang dipapar Asap Rokok. Fak Kedokt Univ Udayana. 2017. https://doi.org/10.2307/j.ctv1k03g7r.9

Fajrin MS, Bamahry A, Karsa NS, Rijal S, Murfat Z. Pengaruh Minyak Zaitun (Extra Virgin Olive Oil) & Minyak Ikan (Omega-3) Terhadap Kadar Malondialdehyde Pada Tikus Putih Galur Wistar Hiperglikemik. Fakumi Med J J Mhs Kedokt. 2022;2: 42-50.

Kurniawati M, Jufriadi A, Subandi, Rumhayati B. Potensi Xanton Sebagai Anti Radikal Oxigen Species (ROS) pada Diabetes Mellitus. 2016.

Oladayo MI. Nigerian propolis improves blood glucose, glycated hemoglobin A1c, very low-density lipoprotein, and highdensity lipoprotein levels in rat models of diabetes. J Intercult Ethnopharmacol. 2016;5: 233-238. https://doi.org/10.5455/jice.20160502065029

Hadwan MH. Simple spectrophotometric assay for measuring catalase activity in biological tissues. BMC Biochem. 2018;19: 1-8. https://doi.org/10.1186/s12858-018-0097-5

Amin EF, Rifaai RA, Abdel‐latif RG. Empagliflozin attenuates transient cerebral ischemia/reperfusion injury in hyperglycemic rats via repressing oxidative-inflammatory-apoptotic pathway. Fundam Clin Pharmacol. 2020;34: 548-558. https://doi.org/10.1111/fcp.12548

Rowiński R, Kozakiewicz M, Kędziora-Kornatowska K, Hübner-Woźniak E, Kędziora J. Markers of oxidative stress and erythrocyte antioxidant enzyme activity in older men and women with differing physical activity. Exp Gerontol. 2013;48: 1141-1146. https://doi.org/10.1016/j.exger.2013.07.010

Suarsana N, Utama IH, Kardena IM. Immunohistochemical expression of insulin and glucagon, superoxide dismutase and catalase activity in pancreas in hyperglycaemia condition. Asian J Biochem. 2016;11: 177-185. https://doi.org/10.3923/ajb.2016.177.185

Agarkov AA, Popova TN, Boltysheva YG. Influence of 10-(6-plastoquinonyl) decyltriphenylphosphonium on free-radical homeostasis in the heart and blood serum of rats with streptozotocin-induced hyperglycemia. World J Diabetes. 2019;10: 546. https://doi.org/10.4239/wjd.v10.i12.546

Gebicka L, Krych-Madej J. The role of catalases in the prevention/promotion of oxidative stress. J Inorg Biochem. 2019;197: 110699. https://doi.org/10.1016/j.jinorgbio.2019.110699

Nandi A, Yan L-J, Jana CK, Das N. Role of catalase in oxidative stress-and age-associated degenerative diseases. Oxid Med Cell Longev. 2019;2019. https://doi.org/10.1155/2019/9613090

Ighodaro OM, Akinloye OA. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria J Med. 2018;54: 287-293. https://doi.org/10.1016/j.ajme.2017.09.001

Lubos E, Loscalzo J, Handy DE. Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities. 2011. https://doi.org/10.1089/ars.2010.3586

Sultan CS, Saackel A, Stank A, Fleming T, Fedorova M, Hoffmann R, et al. Impact of carbonylation on glutathione peroxidase-1 activity in human hyperglycemic endothelial cells. Redox Biol. 2018;16: 113-122. https://doi.org/10.1016/j.redox.2018.02.018

Brigelius-Flohé R, Flohé L. Regulatory phenomena in the glutathione peroxidase superfamily. Antioxid Redox Signal. 2020;33: 498-516. https://doi.org/10.1089/ars.2019.7905

Conde C, Escribano BM, Luque E, Aguilar-Luque M, Feijóo M, Ochoa JJ, et al. The protective effect of extra-virgin olive oil in the experimental model of multiple sclerosis in the rat. Nutr Neurosci. 2020;23: 37-48. https://doi.org/10.1080/1028415X.2018.1469281

Published
2023-12-31
How to Cite
Okvenda, A. Z., Yerizel, E., & Raveinal. (2023). Olive oil increase catalase activity and gluthatione peroxidase level in hyperglycemic rats. Acta Biochimica Indonesiana, 6(2), 137. Retrieved from https://pbbmi.org/newjurnal/index.php/actabioina/article/view/137