Hypoglychemic activity of Moringa oleifera extract in streptozotocin-induced diabetic rats

  • Rabiatul Adawiyah Department of Biochemistry, Faculty of Medicine, Tadulako University
  • Tri Setyawati Department of Biochemistry, Faculty of Medicine, Tadulako University
  • Rahma Badaruddin Department of Physiology, Faculty of Medicine, Tadulako University
  • Listawati Department of Biochemistry, Faculty of Medicine, Tadulako University, Palu, 94148, Indonesia
Keywords: diabetes, Moringa oleifera, insulin, hyperglycemia, streptozotocin

Abstract

Background: Diabetes mellitus, particularly Type 2 (T2DM), is a global health concern characterized by high blood glucose levels and insulin resistance.

Objective: This study aims to explore the hypoglycemic potential of M. oleifera, a plant that thrives in Central Sulawesi, using a rat model of T2DM.

Method: Healthy male Wistar rats (weight 200-300 g, aged 9-11 weeks) were used in the experiment. The rats were divided into five groups: normal control (healthy), negative control (diabetic without treatment), positive control (diabetic treated with 9 mg/200 g metformin), treatment 1 (diabetic treated with 400 mg/kg BW M. oleifera extract), and treatment 2 (diabetic treated with 800 mg/kg BW M.oleifera extract). Fasting blood glucose levels were measured enzymatically using the Glucose GOD FS kit from DiaSys. Data were analyzed using ANOVA followed by post-hoc analysis.

Results: The fasting blood glucose levels significantly differed among the groups (ANOVA, p = 0.0426). The normal control group maintained stable glucose levels (108.3 ± 8.34 mg/dL pre-test and 106.6 ± 29.67 mg/dL post-test). The negative control group showed a marked increase in glucose levels (185.3 ± 36.28 mg/dL to 268.6 ± 17.63 mg/dL). The positive control group (metformin) significantly reduced glucose levels (386.8 ± 64.22 mg/dL to 230.8 ± 25.82 mg/dL). Treatment 1 (400 mg/kg BW) reduced glucose levels from 292.2 ± 0.98 mg/dL to 218.1 ± 13.74 mg/dL, and treatment 2 (800 mg/kg BW) showed a substantial reduction from 287.3 ± 85.30 mg/dL to 145.3 ± 28.30 mg/dL. However, the Bonferroni post-hoc analysis indicated no significant differences between pre-test and post-test levels within each group.

Conclusion: The M.oleifera extract exhibited a hypoglycemic effect in diabetic rats, with the higher dose (800 mg/kg BW) showing a more pronounced effect.

References

Jia G, Aroor AR, Jia C, Sowers JR. Endothelial cell senescence in aging-related vascular dysfunction. Biochim Biophys Acta Mol Basis Dis. 2019;1865: 1802-1809. https://doi.org/10.1016/j.bbadis.2018.08.008

Avelar RA, Ortega JG, Tacutu R, Tyler EJ, Bennett D, Binetti P, et al. A multidimensional systems biology analysis of cellular senescence in aging and disease. Genome Biol. 2020;21: 91. https://doi.org/10.1186/s13059-020-01990-9

Di Micco R, Krizhanovsky V, Baker D, d'Adda di Fagagna F. Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat Rev Mol Cell Biol. 2021;22: 75-95. https://doi.org/10.1038/s41580-020-00314-w

Davan-Wetton CSA, Pessolano E, Perretti M, Montero-Melendez T. Senescence under appraisal: hopes and challenges revisited. Cell Mol Life Sci. 2021;78: 3333-3354. https://doi.org/10.1007/s00018-020-03746-x

Martínez-Zamudio RI, Herbig U. Cell Senescence. In: Gu D, Dupre ME, editors. Encyclopedia of gerontology and population aging. Cham: Springer International Publishing; 2019. pp. 1-15. https://doi.org/10.1007/978-3-319-69892-2_38-1

Kartha CC. Cardiomyocytes in health and disease. Cham: Springer International Publishing; 2021. https://doi.org/10.1007/978-3-030-85536-9

Herranz N, Gil J. Mechanisms and functions of cellular senescence. J Clin Invest. 2018;128: 1238-1246. https://doi.org/10.1172/JCI95148

Admasu TD, Rae M, Stolzing A. Dissecting primary and secondary senescence to enable new senotherapeutic strategies. Ageing Res Rev. 2021;70: 101412. https://doi.org/10.1016/j.arr.2021.101412

Dodig S, Čepelak I, Pavić I. Hallmarks of senescence and aging. Biochem Med (Zagreb). 2019;29: 030501. https://doi.org/10.11613/BM.2019.030501

Dubois-Deruy E, Peugnet V, Turkieh A, Pinet F. Oxidative stress in cardiovascular diseases. Antioxidants (Basel). 2020;9. https://doi.org/10.3390/antiox9090864

Kumari R, Jat P. Mechanisms of cellular senescence: cell cycle arrest and senescence associated secretory phenotype. Front Cell Dev Biol. 2021;9: 645593. https://doi.org/10.3389/fcell.2021.645593

Anderson R, Lagnado A, Maggiorani D, Walaszczyk A, Dookun E, Chapman J, et al. Length-independent telomere damage drives post-mitotic cardiomyocyte senescence. EMBO J. 2019;38. https://doi.org/10.15252/embj.2018100492

Argüello-Miranda O, Marchand A, Kennedy T, Russo MA, Noh J. Cell cycle-independent integration of stress signals promotes Non-G1/G0 quiescence entry. BioRxiv. 2021; https://doi.org/10.1101/2021.03.13.434817

Hoffmann MJ, Meneceur S, Hommel K, Schulz WA, Niegisch G. Downregulation of Cell Cycle and Checkpoint Genes by Class I HDAC Inhibitors Limits Synergism with G2/M Checkpoint Inhibitor MK-1775 in Bladder Cancer Cells. Genes (Basel). 2021;12. https://doi.org/10.3390/genes12020260

Ikeda S, Zablocki D, Sadoshima J. The role of autophagy in death of cardiomyocytes. J Mol Cell Cardiol. 2022;165: 1-8. https://doi.org/10.1016/j.yjmcc.2021.12.006

Ogrodnik M. Cellular aging beyond cellular senescence: Markers of senescence prior to cell cycle arrest in vitro and in vivo. Aging Cell. 2021;20: e13338. https://doi.org/10.1111/acel.13338

Kaplan A, Abidi E, Ghali R, Booz GW, Kobeissy F, Zouein FA. Functional, Cellular, and Molecular Remodeling of the Heart under Influence of Oxidative Cigarette Tobacco Smoke. Oxid Med Cell Longev. 2017;2017: 3759186. https://doi.org/10.1155/2017/3759186

Katsuumi G, Shimizu I, Yoshida Y, Minamino T. Vascular senescence in cardiovascular and metabolic diseases. Front Cardiovasc Med. 2018;5: 18. https://doi.org/10.3389/fcvm.2018.00018

Jangid A, Malik MZ, Ramaswamy R, Singh RKB. Transition and identification of pathological states in p53 dynamics for therapeutic intervention. Sci Rep. 2021;11: 2349. https://doi.org/10.1038/s41598-021-82054-1

Tanaka Y, Takahashi A. Senescence-associated extracellular vesicle release plays a role in senescence-associated secretory phenotype (SASP) in age-associated diseases. J Biochem. 2021;169: 147-153. https://doi.org/10.1093/jb/mvaa109

Kirkland JL, Tchkonia T. Cellular senescence: A translational perspective. EBioMedicine. 2017;21: 21-28. https://doi.org/10.1016/j.ebiom.2017.04.013

Hinds P, Pietruska J. Senescence and tumor suppression. [version 1; peer review: 2 approved]. F1000Res. 2017;6: 2121. https://doi.org/10.12688/f1000research.11671.1

Beck J, Turnquist C, Horikawa I, Harris C. Targeting cellular senescence in cancer and aging: roles of p53 and its isoforms. Carcinogenesis. 2020;41: 1017-1029. https://doi.org/10.1093/carcin/bgaa071

Fujita K. p53 Isoforms in Cellular Senescence- and Ageing-Associated Biological and Physiological Functions. Int J Mol Sci. 2019;20. https://doi.org/10.3390/ijms20236023

Mijit M, Caracciolo V, Melillo A, Amicarelli F, Giordano A. Role of p53 in the regulation of cellular senescence. Biomolecules. 2020;10. https://doi.org/10.3390/biom10030420

Shimizu I, Minamino T. Cellular senescence in cardiac diseases. J Cardiol. 2019;74: 313-319. https://doi.org/10.1016/j.jjcc.2019.05.002

Sun X, Feinberg MW. Vascular endothelial senescence: pathobiological insights, emerging long noncoding RNA targets, challenges and therapeutic opportunities. Front Physiol. 2021;12: 693067. https://doi.org/10.3389/fphys.2021.693067

Xu S, Wu W, Huang H, Huang R, Xie L, Su A, et al. The p53/miRNAs/Ccna2 pathway serves as a novel regulator of cellular senescence: Complement of the canonical p53/p21 pathway. Aging Cell. 2019;18: e12918. https://doi.org/10.1111/acel.12918

Published
2024-08-04
How to Cite
Adawiyah, R., Setyawati, T., Badaruddin, R., & Listawati. (2024). Hypoglychemic activity of Moringa oleifera extract in streptozotocin-induced diabetic rats. Acta Biochimica Indonesiana, 7(1), 130. https://doi.org/10.32889/actabioina.130