Effect of pasak bumi (Eurycoma longifolia Jack), DHA, and seluang fish (Rasbora spp.) on neuroinflammation and neurotransmitter alterations in malnourished rats

Keywords: malnutrition, pasak bumi, neuroinflammation, neurotransmitter

Abstract

Background: Malnutrition has detrimental effects on brain development, leading to neuroinflammatory and neurotransmitter disorders. A nutrient-rich diet is advocated to mitigate these effects. In South Kalimantan, natural resources such as pasak bumi (Eurycoma longifolia Jack.) and seluang fish (Rasbora spp.) are recognized for their potential antioxidant and anti-inflammatory properties.

Objective: This study aimed to evaluate the effects of pasak bumi in comparison with seluang fish and DHA on neuroinflammation and neurotransmitter imbalances in malnourished rats.

Methods: The study involved dividing malnourished rats into six experimental groups: (1) untreated control, (2) treated with pasak bumi extract, (3) treated with DHA, (4) treated with a combination of DHA and pasak bumi extract, (5) treated with seluang fish, (6) treated with a combination of seluang fish and pasak bumi extract; and a control group of normal rats receiving standard feed and placebo. The primary outcomes measured were levels of IL-6, TNF-α, and serotonin.

Results: The study revealed that malnutrition in rats significantly elevated IL-6 and TNF-α levels. Treatments involving pasak bumi extract, both alone and in combination with DHA or seluang fish, reduced IL-6 levels. Similarly, combination of pasak bumi extract and DHA or seluang fish lowered TNF-α levels than single treatment of pasak bumi extract (p > 0.05). All treatments did not reduce the serotonin level.

Conclusion: The findings of this study underscore the potent anti-inflammatory capabilities of pasak bumi extract, particularly when combined with DHA or seluang fish, in mitigating the inflammatory response in malnourished rats.

References

Kemenkes. Buku Saku Hasil Studi Status Gizi Indonesia (SSGI) Tingkat Nasional, Provinsi, dan Kabupaten/Kota Tahun 2021 . Kementerian Kesehatan Republik Indonesia, 2021 Des.

Masoud MA, Kotb AS, Abd El-Raouf OM, Fikry EM. The neuroprotective effects of natural antioxidant against brain injury induced by paracetamol in a rat model of protein malnutrition. Egyptian Pharmaceutical Journal. 2020 Jan 1;19(1):55. https://doi.org/10.4103/epj.epj_54_19

Gourine H, Grar H, Dib W, Mehedi N, Boualga A, Saidi D, Kheroua O. Effect of a normal protein diet on oxidative stress and organ damage in malnourished rats. Frontiers in Biology. 2018 Oct;13(5):366-75. https://doi.org/10.1007/s11515-018-1511-5

Alkadi H. A review on free radicals and antioxidants. Infectious Disorders-Drug Targets (Formerly Current Drug Targets-Infectious Disorders). 2020 Feb 1;20(1):16-26. https://doi.org/10.2174/1871526518666180628124323

Khare M, Mohanty C, Das BK, Jyoti A, Mukhopadhyay B, Mishra SP. Free radicals and antioxidant status in protein energy malnutrition. International journal of pediatrics. 2014 Oct;2014. https://doi.org/10.1155/2014/254396

Gavia-García G, Rosas-Trejo MD, García-Mendoza E, Toledo-Pérez R, Königsberg M, Nájera-Medina O, Luna-Lopez A, González-Torres MC. t-BHQ protects against oxidative damage and maintains the antioxidant response in malnourished rats. Dose-response. 2018 Sep 25;16(3):1559325818796304. https://doi.org/10.1177/1559325818796304

Stephensen CB. Primer on immune response and interface with malnutrition. InNutrition and infectious diseases 2021 (pp. 83-110). Humana, Cham. https://doi.org/10.1007/978-3-030-56913-6_3

Sanyoto DD, Noor MS. The effect of ethanol extract of pasak bumi (Eurycoma longifolia Jack.) on neurogenesis and neuroinflammation of rat post protein malnutrition. InIOP Conference Series: Earth and Environmental Science 2021 Nov 1 (Vol. 913, No. 1, p. 012091). IOP Publishing. https://doi.org/10.1088/1755-1315/913/1/012091

De Aquino CC, Leitão RA, Oliveira Alves LA, Coelho-Santos V, Guerrant RL, Ribeiro CF, Malva JO, Silva AP, Oriá RB. Effect of hypoproteic and high-fat diets on hippocampal blood-brain barrier permeability and oxidative stress. Frontiers in nutrition. 2019 Jan 9;5:131. https://doi.org/10.3389/fnut.2018.00131

Adelantado-Renau M, Beltran-Valls MR, Moliner-Urdiales D. Inflammation and cognition in children and adolescents: a call for action. Frontiers in Pediatrics. 2020 Sep 9;8:583. https://doi.org/10.3389/fped.2020.00583

Goudet SM, Bogin BA, Madise NJ, Griffiths PL. Nutritional interventions for preventing stunting in children (birth to 59 months) living in urban slums in low‐and middle‐income countries (LMIC). Cochrane Database of Systematic Reviews. 2019(6). https://doi.org/10.1002/14651858.CD011695.pub2

Scott N, Delport D, Hainsworth S, Pearson R, Morgan C, Huang S, Akuoku JK, Piwoz E, Shekar M, Levin C, Toole M. Ending malnutrition in all its forms requires scaling up proven nutrition interventions and much more: a 129-country analysis. BMC medicine. 2020 Dec;18(1):1-9. https://doi.org/10.1186/s12916-020-01786-5

Triawanti, Yunanto A, Sanyoto DD, Nur'amin HW. Nutritional Status Improvement in Malnourished Rat (Rattus norvegicus) after Seluang Fish (Rasbora spp.) Treatment. Current Research in Nutrition and Food Science Journal. 2018 Apr 20;6(1):127-34. https://doi.org/10.12944/CRNFSJ.6.1.14

Triawanti, Sanyoto DD, Nur'amin HW. Reduction of Oxidative Stress by Seluang Fish (Rasbora spp.) in Brain of Malnourished Rats (Rattus norvegicus). International Journal of Food Engineering. 2018. 3(2): 107-111. https://doi.org/10.18178/ijfe.3.2.107-111

Yunanto A, Didik DS, Triawanti, Meitria SN. 2014. Benefit of seluang fish (rasbora spp.)'S south kalimantan to the improvement of spatial memory quality. The 3rd International Symposium on wetlands enviromental Management, Banjarmasin 8-9 Nopember 2014.

Hoorweg JC. Protein-energy malnutrition and intellectual abilities. InProtein-energy malnutrition and intellectual abilities 2019 Jul 8. De Gruyter Mouton.

Chaingam J, Choonong R, Juengwatanatrakul T, Kanchanapoom T, Putalun W, Yusakul G. Evaluation of anti-inflammatory properties of Eurycoma longifolia Jack and Eurycoma harmandiana Pierre in vitro cultures and their constituents. Food and Agricultural Immunology. 2022 Dec 31;33(1):530-45. https://doi.org/10.1080/09540105.2022.2100324

Bai R, Yao C, Zhong Z, Ge J, Bai Z, Ye X, Xie T, Xie Y. Discovery of natural anti-inflammatory alkaloids: Potential leads for the drug discovery for the treatment of inflammation. European Journal of Medicinal Chemistry. 2021 Mar 5;213:113165. https://doi.org/10.1016/j.ejmech.2021.113165

Triawanti, Sanyoto DD, Noor MS. The supplementation of pasak bumi (Eurycoma longifolia Jack.) in undernourished rats to increase spatial memory through antioxidant mechanism. Clinical Nutrition Experimental. 2020 Oct 1;33:49-59. https://doi.org/10.1016/j.yclnex.2020.08.002

Roe K. An inflammation classification system using cytokine parameters. Scandinavian journal of immunology. 2021 Feb;93(2):e12970. https://doi.org/10.1111/sji.12970

Wu H, Denna TH, Storkersen JN, Gerriets VA. Beyond a neurotransmitter: The role of serotonin in inflammation and immunity. Pharmacological Research. 2019 Feb 1;140:100-14. https://doi.org/10.1016/j.phrs.2018.06.015

Sanyoto DD, Noor MS, Triawanti T. Potential Combinations of Pasak Bumi (Eurycoma longifolia Jack), Docosahexaenoic Acid, and Seluang Fish (Rasbora spp.) to Improving Oxidative Stress of Rats (Rattus norvegicus) Brain Undernutrition. Open Access Macedonian Journal of Medical Sciences. 2022 Jan 1;10(A):25-32. https://doi.org/10.3889/oamjms.2022.7671

Sanyoto DD, Noor MS. The effect of ethanol extract of pasak bumi (Eurycoma longifolia Jack.) on neurogenesis and neuroinflammation of rat post protein malnutrition. InIOP Conference Series: Earth and Environmental Science 2021 Nov 1 (Vol. 913, No. 1, p. 012091). IOP Publishing. https://doi.org/10.1088/1755-1315/913/1/012091

Ruan J, Li Z, Zhang Y, Chen Y, Liu M, Han L, Zhang Y, Wang T. Bioactive constituents from the roots of Eurycoma longifolia. Molecules. 2019 Aug 30;24(17):3157. https://doi.org/10.3390/molecules24173157

Hien DT, Long TP, Thao TP, Lee JH, Trang DT, Minh NT, Van Cuong P, Dang NH, Dat NT. Anti-inflammatory effects of alkaloid enriched extract from roots of Eurycoma longifolia Jack. Asian Pacific Journal of Tropical Biomedicine. 2019 Jan 1;9(1):18. https://doi.org/10.4103/2221-1691.250265

Emelda E. Potensi Tongkat Ali (Eurycoma longifolia Jack.) Sebagai Anti Inflamasi. Jcps (Journal of Current Pharmaceutical Sciences). 2017 Sep 25;1(1):25-9.

Calder PC. Marine ω-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids. 2015 Apr 1;1851(4):469-84. https://doi.org/10.1016/j.bbalip.2014.08.010

D'Angelo S, Motti ML, Meccariello R. ω-3 and ω-6 polyunsaturated fatty acids, obesity and cancer. Nutrients. 2020 Sep 10;12(9):2751. https://doi.org/10.3390/nu12092751

Muralidharan J, Papandreou C, Sala-Vila A, et al. Fatty Acids Composition of Blood Cell Membranes and Peripheral Inflammation in the PREDIMED Study: A Cross-Sectional Analysis. Nutrients. 2019;11(3):576. https://doi.org/10.3390/nu11030576

Yamaguchi A, Botta E, Holinstat M. Eicosanoids in inflammation in the blood and the vessel. Frontiers in Pharmacology. 2022:3973. https://doi.org/10.3389/fphar.2022.997403

Innes JK, Calder PC. Ω-6 fatty acids and inflammation. Prostaglandins Leukot Essent Fatty Acids. 2018;132:41-48. https://doi.org/10.1016/j.plefa.2018.03.004

Calder PC. Eicosapentaenoic and docosahexaenoic acid derived specialised pro-resolving mediators: Concentrations in humans and the effects of age, sex, disease and increased ω-3 fatty acid intake. Biochimie. 2020 Nov 1;178:105-23. https://doi.org/10.1016/j.biochi.2020.08.015

Tułowiecka N, Kotlęga D, Prowans P, Szczuko M. The role of resolvins: EPA and DHA derivatives can be useful in the prevention and treatment of ischemic stroke. International Journal of Molecular Sciences. 2020 Oct 15;21(20):7628. https://doi.org/10.3390/ijms21207628

Miao LH, Remø SC, Espe M, Philip AJ, Hamre K, Fjelldal PG, Skjærven K, Holen E, Vikeså V, Sissener NH. Dietary plant oil supplemented with arachidonic acid and eicosapentaenoic acid affects the fatty acid composition and eicosanoid metabolism of Atlantic salmon (Salmo salar L.) during smoltification. Fish & Shellfish Immunology. 2022 Apr 1;123:194-206. https://doi.org/10.1016/j.fsi.2022.02.049

Che H, Li H, Song L, Dong X, Yang X, Zhang T, Wang Y, Xie W. Orally Administered DHA‐Enriched Phospholipids and DHA‐Enriched Triglyceride Relieve Oxidative Stress, Improve Intestinal Barrier, Modulate Inflammatory Cytokine and Gut Microbiota, and Meliorate Inflammatory Responses in the Brain in Dextran Sodium Sulfate Induced Colitis in Mice. Molecular Nutrition & Food Research. 2021 Aug;65(15):2000986. https://doi.org/10.1002/mnfr.202000986

Shibabaw T. Ω-3 polyunsaturated fatty acids: anti-inflammatory and anti-hypertriglyceridemia mechanisms in cardiovascular disease. Molecular and Cellular Biochemistry. 2021 Feb;476(2):993-1003. https://doi.org/10.1007/s11010-020-03965-7

Calder PC. Ω‐3 polyunsaturated fatty acids and inflammatory processes: nutrition or pharmacology?. British journal of clinical pharmacology. 2013 Mar;75(3):645-62. https://doi.org/10.1111/j.1365-2125.2012.04374.x

Abou-Saleh H, Ouhtit A, Halade GV, Rahman MM. Bone benefits of fish oil supplementation depend on its EPA and DHA content. Nutrients. 2019 Nov 8;11(11):2701. https://doi.org/10.3390/nu11112701

Sogandi S, Sanjaya RE, Baity N, Syahmani S. Identifikasi kandungan gizi dan profil asam amino dari ikan seluang [rasbora sp] (identification of nutritional content and profiles of amino acid from seluang fish [Rasbora Sp]). Penelitian Gizi dan Makanan (The Journal of Nutrition and Food Research). 2019;42(2):73-80. https://doi.org/10.22435/pgm.v42i2.1287

He F, Wu C, Li P, Li N, Zhang D, Zhu Q, Ren W, Peng Y. Functions and signaling pathways of amino acids in intestinal inflammation. BioMed research international. 2018 Oct;2018. https://doi.org/10.1155/2018/9171905

Bae JY, Koo GH, Park SC, Shin KO. Effects of branched-chain amino acid and glutamine supplementation on angiogenic factors and pro-inflammatory cytokines after acute exercise in adolescence athletes. The Asian Journal of Kinesiology. 2019 Apr 30;21(2):51-8. https://doi.org/10.15758/ajk.2019.21.2.51

Farré R, Fiorani M, Abdu Rahiman S, Matteoli G. Intestinal permeability, inflammation and the role of nutrients. Nutrients. 2020 Apr 23;12(4):1185. https://doi.org/10.3390/nu12041185

Sugihara K, Morhardt TL, Kamada N. The role of dietary nutrients in inflammatory bowel disease. Frontiers in Immunology. 2019 Jan 15;9:3183. https://doi.org/10.3389/fimmu.2018.03183

Sorgdrager FJ, Naudé PJ, Kema IP, Nollen EA, Deyn PP. Tryptophan metabolism in inflammaging: from biomarker to therapeutic target. Frontiers in Immunology. 2019 Oct 30;10:2565. https://doi.org/10.3389/fimmu.2019.02565

Hou YC, Wu JM, Wang MY, Wu MH, Chen KY, Yeh SL, Lin MT. Glutamine supplementation attenuates expressions of adhesion molecules and chemokine receptors on T cells in a murine model of acute colitis. Mediators of Inflammation. 2014 Oct;2014. https://doi.org/10.1155/2014/837107

Fazio F, Ulivieri M, Volpi C, Gargaro M, Fallarino F. Targeting metabotropic glutamate receptors for the treatment of neuroinflammation. Current Opinion in Pharmacology. 2018 Feb 1;38:16-23. https://doi.org/10.1016/j.coph.2018.01.010

Hasegawa T, Mizugaki A, Inoue Y, Kato H, Murakami H. Cystine reduces tight junction permeability and intestinal inflammation induced by oxidative stress in Caco-2 cells. Amino Acids. 2021 Jul;53(7):1021-32. https://doi.org/10.1007/s00726-021-03001-y

Ting LE, Leach ST, Lemberg DA, Day AS. A Brief Overview of Nutrient Anti-Inflammatory Molecules and their In Vitro and In Vivo Activity. Journal of Nutritional Medicine and Diet Care. 2016;2(2). https://doi.org/10.23937/2572-3278.1510018

Wu T, Wang C, Ding L, Shen Y, Cui H, Wang M, Wang H. Arginine relieves the inflammatory response and enhances the casein expression in bovine mammary epithelial cells induced by lipopolysaccharide. Mediators of Inflammation. 2016 Jan 1;2016. https://doi.org/10.1155/2016/9618795

Bao X, Feng Z, Yao J, Li T, Yin Y. Roles of dietary amino acids and their metabolites in pathogenesis of inflammatory bowel disease. Mediators of inflammation. 2017 Oct;2017. https://doi.org/10.1155/2017/6869259

Wessler LB, de Miranda Ramos V, Pasquali MA, Moreira JC, de Oliveira J, Scaini G, Streck EL. Administration of branched-chain amino acids increases the susceptibility to lipopolysaccharide-induced inflammation in young Wistar rats. International Journal of Developmental Neuroscience. 2019 Nov 1;78:210-4. https://doi.org/10.1016/j.ijdevneu.2019.07.007

Kato H, Miura K, Nakano S, Suzuki K, Bannai M, Inoue Y. Leucine-enriched essential amino acids attenuate inflammation in rat muscle and enhance muscle repair after eccentric contraction. Amino Acids. 2016 Sep;48(9):2145-55. https://doi.org/10.1007/s00726-016-2240-1

Da Silva MS, Bigo C, Barbier O, Rudkowska I. Whey protein hydrolysate and branched-chain amino acids downregulate inflammation-related genes in vascular endothelial cells. Nutrition Research. 2017 Feb 1;38:43-51. https://doi.org/10.1016/j.nutres.2017.01.005

Holeček M. Branched-chain amino acids in health and disease: metabolism, alterations in blood plasma, and as supplements. Nutrition & metabolism. 2018 Dec;15(1):1-2. https://doi.org/10.1186/s12986-018-0271-1

Cooper AJ. Glutamine synthetase. InGlutamine and glutamate in mammals 2018 Jan 18 (pp. 7-32). CRC Press. https://doi.org/10.1201/9781351072298-3

Shu XL, Yu TT, Kang K, Zhao J. Effects of glutamine on markers of intestinal inflammatory response and mucosal permeability in abdominal surgery patients: A meta-analysis. Experimental and therapeutic medicine. 2016 Dec 1;12(6):3499-506. https://doi.org/10.3892/etm.2016.3799

Kim MH, Kim H. The roles of glutamine in the intestine and its implication in intestinal diseases. International journal of molecular sciences. 2017 May 12;18(5):1051. https://doi.org/10.3390/ijms18051051

Cruzat V, Macedo Rogero M, Noel Keane K, Curi R, Newsholme P. Glutamine: metabolism and immune function, supplementation and clinical translation. Nutrients. 2018 Oct 23;10(11):1564. https://doi.org/10.3390/nu10111564

Yan S, Hui Y, Li J, Xu X, Li Q, Wei H. Glutamine relieves oxidative stress through PI3K/Akt signaling pathway in DSS-induced ulcerative colitis mice. Iranian Journal of Basic Medical Sciences. 2020 Sep;23(9):1124.

Chen L, Deng H, Cui H, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2017;9(6):7204-7218. https://doi.org/10.18632/oncotarget.23208

Luo LL, Li YF, Shan HM, Wang LP, Yuan F, Ma YY, Li WL, He TT, Wang YY, Qu MJ, Liang HB. L‐glutamine protects mouse brain from ischemic injury via up‐regulating heat shock protein 70. CNS neuroscience & therapeutics. 2019 Sep;25(9):1030-41. https://doi.org/10.1111/cns.13184

Petry ÉR, de Freitas Dresch D, Carvalho C, Medeiros PC, Rosa TG, de Oliveira CM, Martins LA, Schemitt E, Bona S, Guma FC, Marroni NP. Oral glutamine supplementation attenuates inflammation and oxidative stress-mediated skeletal muscle protein content degradation in immobilized rats: Role of 70 kDa heat shock protein. Free Radical Biology and Medicine. 2019 Dec 1;145:87-102. https://doi.org/10.1016/j.freeradbiomed.2019.08.033

Deters BJ, Saleem M. The role of glutamine in supporting gut health and neuropsychiatric factors. Food Science and Human Wellness. 2021 Mar 1;10(2):149-54. https://doi.org/10.1016/j.fshw.2021.02.003

Manuel Apolinar L, Rocha L, Datriawamasio L, Tesoro Cruz E, Zarate A. Role of prenatal undernutrition in the expression of serotonin, dopamine and leptin receptors in adult mice: implications of food intake. Molecular medicine reports. 2014 Feb 1;9(2):407-12. https://doi.org/10.3892/mmr.2013.1853

Mokler DJ, McGaughy JA, Bass D, Morgane PJ, Rosene DL, Amaral AC, Rushmore RJ, Galler JR. Prenatal protein malnutrition leads to hemispheric differences in the extracellular concentrations of norepinephrine, dopamine and serotonin in the medial prefrontal cortex of adult rats. Frontiers in Neuroscience. 2019 Mar 5;13:136. https://doi.org/10.3389/fnins.2019.00136

Hernández-Rodríguez J, Mondragón-Herrera JA, Boyzo-Montes de Oca A, Mercado-Camargo R, & Manjarrez-Gutiérrez G. How intrauterine growth restriction due to nutritional stress changes the function of key proteins in brain serotonin metabolism during development. Boletín médico del Hospital Infantil de México. 2021; 78(6), 571-583. https://doi.org/10.24875/BMHIM.20000334

Friedman M. Analysis, nutrition, and health benefits of tryptophan. International Journal of Tryptophan Research. 2018; 11, 1178646918802282. https://doi.org/10.1177/1178646918802282

Manjarrez-Gutiérrez G, Hernández-Rodríguez J, & Mondragón-Herrera JA. Nutritional Recovery and its Effect on Tryptophan-5-Hydroxylases Expression. Cell Number and on Changes Caused by Intrauterine Growth Restriction in the Developing Brain. J Nutr Food Sci. 2020; 10, 774

Van Galen KA, Ter Horst KW, & Serlie MJ. Serotonin, food intake, and obesity. Obesity Reviews. 2021; 22(7), e13210. https://doi.org/10.1111/obr.13210

Siotto M, Germanotta M, Santoro M, et al. Serotonin Levels and Cognitive Recovery in Patients with Subacute Stroke after Rehabilitation Treatment. Brain Sci. 2021;11(5):642. https://doi.org/10.3390/brainsci11050642

Stahl SM. Beyond the dopamine hypothesis of schizophrenia to three neural networks of psychosis: dopamine, serotonin, and glutamate. CNS spectrums. 2018 Jun;23(3):187-91. https://doi.org/10.1017/S1092852918001013

Haleem DJ, & Mahmood K. Brain serotonin in high-fat diet-induced weight gain, anxiety and spatial memory in rats. Nutritional neuroscience. 2021; 24(3), 226-235. https://doi.org/10.1080/1028415X.2019.1619983

Daray FM, Mann JJ, Sublette ME. How lipids may affect risk for suicidal behavior. J Psychiatr Res. 2018;104:16-23. https://doi.org/10.1016/j.jpsychires.2018.06.007

Lange KW. Ω-3 fatty acids and mental health. Global Health Journal. 2020 Mar 1;4(1):18-30. https://doi.org/10.1016/j.glohj.2020.01.004

Published
2023-12-31
How to Cite
Triawanti, Sanyoto, D. D., Noor, M. S., & Airlangga, D. I. (2023). Effect of pasak bumi (Eurycoma longifolia Jack), DHA, and seluang fish (Rasbora spp.) on neuroinflammation and neurotransmitter alterations in malnourished rats. Acta Biochimica Indonesiana, 6(1), 114. https://doi.org/10.32889/actabioina.114