Comparing the effect of Centella asiatica L. and Acalypha indica L. treatment to carbonyl and glutathione level in the brains of old rats

Keywords: Acalypha indica, Centella asiatica, carbonyl, GSH, old rat brain

Abstract

Background: Free radicals in excessive concentrations damages cells and accelerate the aging process. Antioxidants found in Centella asiatica (CA) and Acalypha indica (AI) have the potential to prevent oxidative cellular damage.

Objective: This study aimed to determine the effect of CA and AI on carbonyl and glutathione levels in the brain of older rats.

Methods: 18-month age rats were treated using either AI, CA, or vitamin E. In addition, 18-month age and 2-month age untreated rats were used as a negative control. The brain carbonyl and glutathione levels were measured by Agustyanak and the Elmann method, respectively.

Results: Treatment with CA significantly decreased brain carbonyl levels (2.87 nmol/mL) than the control rats (4.54 nmol/mL). Furthermore, treating AI did not reduce the brain carbonyl and GSH levels in aged brain rats.

Conclusion: Centella asiatica can reduce the protein destruction that occurs with increasing age.

References

Jatayu D, Nursyam H, Maizar Suryanto Hertika A. Antioxidant Effect of Centella asiatica Ethanolic Extract to Superoxide Dismutase (SOD) Level on Cyprinus carpio Liver. RJLS. 2018;5: 163-172. https://doi.org/10.21776/ub.rjls.2018.005.03.4

Zofia N-Ł, Martyna Z-D, Aleksandra Z, Tomasz B. Comparison of the Antiaging and Protective Properties of Plants from the Apiaceae Family. Oxid Med Cell Longev. 2020;2020: 5307614. https://doi.org/10.1155/2020/5307614

Buranasudja V, Rani D, Malla A, Kobtrakul K, Vimolmangkang S. Insights into antioxidant activities and anti-skin-aging potential of callus extract from Centella asiatica (L.). Sci Rep. 2021;11: 13459. https://doi.org/10.1038/s41598-021-92958-7

Sahukari R, Punabaka J, Bhasha S, Ganjikunta VS, Kondeti Ramudu S, Kesireddy SR, et al. Phytochemical Profile, Free Radical Scavenging and Anti-Inflammatory Properties of Acalypha Indica Root Extract: Evidence from In Vitro and In Vivo Studies. Molecules. 2021;26. https://doi.org/10.3390/molecules26206251

Dwijayanti A, Frethernety A, Hardiany NS, Purwaningsih EH. Hepatoprotective effects of acalypha indica and centella asiatica in rat's liver against hypoxia. Procedia Chem. 2015;14: 11-14. https://doi.org/10.1016/j.proche.2015.03.003

Sun B, Wu L, Wu Y, Zhang C, Qin L, Hayashi M, et al. Therapeutic Potential of Centella asiatica and Its Triterpenes: A Review. Front Pharmacol. 2020;11: 568032. https://doi.org/10.3389/fphar.2020.568032

Gray NE, Zweig JA, Matthews DG, Caruso M, Quinn JF, Soumyanath A. Centella asiatica Attenuates Mitochondrial Dysfunction and Oxidative Stress in Aβ-Exposed Hippocampal Neurons. Oxid Med Cell Longev. 2017;2017: 7023091. https://doi.org/10.1155/2017/7023091

Chintapanti S, Pratap Reddy K, Sreenivasula Reddy P. Behavioral and neurochemical consequences of perinatal exposure to lead in adult male Wistar rats: protective effect by Centella asiatica. Environ Sci Pollut Res Int. 2018;25: 13173-13185. https://doi.org/10.1007/s11356-018-1500-x

Welbat JU, Chaisawang P, Pannangrong W, Wigmore P. Neuroprotective Properties of Asiatic Acid against 5-Fluorouracil Chemotherapy in the Hippocampus in an Adult Rat Model. Nutrients. 2018;10. https://doi.org/10.3390/nu10081053

Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, et al. Oxidative stress, aging, and diseases. Clin Interv Aging. 2018;13: 757-772. https://doi.org/10.2147/CIA.S158513

Pyo IS, Yun S, Yoon YE, Choi J-W, Lee S-J. Mechanisms of Aging and the Preventive Effects of Resveratrol on Age-Related Diseases. Molecules. 2020;25. https://doi.org/10.3390/molecules25204649

Gladyshev VN. The free radical theory of aging is dead. Long live the damage theory! Antioxid Redox Signal. 2014;20: 727-731. https://doi.org/10.1089/ars.2013.5228

Reeg S, Grune T. Protein oxidation in aging: does it play a role in aging progression? Antioxid Redox Signal. 2015;23: 239-255. https://doi.org/10.1089/ars.2014.6062

Gonos ES, Kapetanou M, Sereikaite J, Bartosz G, Naparło K, Grzesik M, et al. Origin and pathophysiology of protein carbonylation, nitration and chlorination in age-related brain diseases and aging. Aging (Albany, NY). 2018;10: 868-901. https://doi.org/10.18632/aging.101450

Sies H. Oxidative stress: a concept in redox biology and medicine. Redox Biol. 2015;4: 180-183. https://doi.org/10.1016/j.redox.2015.01.002

Garbarino VR, Orr ME, Rodriguez KA, Buffenstein R. Mechanisms of oxidative stress resistance in the brain: Lessons learned from hypoxia tolerant extremophilic vertebrates. Arch Biochem Biophys. 2015;576: 8-16. https://doi.org/10.1016/j.abb.2015.01.029

Valli A, Harris AL, Kessler BM. Hypoxia metabolism in ageing. Aging (Albany, NY). 2015;7: 465-466. https://doi.org/10.18632/aging.100782

Conti V, Izzo V, Corbi G, Russomanno G, Manzo V, De Lise F, et al. Antioxidant Supplementation in the Treatment of Aging-Associated Diseases. Front Pharmacol. 2016;7: 24. https://doi.org/10.3389/fphar.2016.00024

Aquilano K, Baldelli S, Ciriolo MR. Glutathione: new roles in redox signaling for an old antioxidant. Front Pharmacol. 2014;5: 196. https://doi.org/10.3389/fphar.2014.00196

Dwijayanti A, Farida S, Purwaningsih EH. Comparing Anti Aging Potential Between Centella asiatica and Acalypha indica : Focus on Forelimb Muscle Strength. Adv Sci Lett. 2018;24: 6058-6060. https://doi.org/10.1166/asl.2018.12621

Augustyniak E, Adam A, Wojdyla K, Rogowska-Wrzesinska A, Willetts R, Korkmaz A, et al. Validation of protein carbonyl measurement: a multi-centre study. Redox Biol. 2015;4: 149-157. https://doi.org/10.1016/j.redox.2014.12.014

Ellman GL, Courtney KD, Andres V, Feather-Stone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961;7: 88-95. https://doi.org/10.1016/0006-2952(61)90145-9

Tanase M, Urbanska AM, Zolla V, Clement CC, Huang L, Morozova K, et al. Role of Carbonyl Modifications on Aging-Associated Protein Aggregation. Sci Rep. 2016;6: 19311. https://doi.org/10.1038/srep19311

Meeran MFN, Goyal SN, Suchal K, Sharma C, Patil CR, Ojha SK. Pharmacological properties, molecular mechanisms, and pharmaceutical development of asiatic acid: A pentacyclic triterpenoid of therapeutic promise. Front Pharmacol. 2018;9: 892. https://doi.org/10.3389/fphar.2018.00892

Liu H, Guo X, Chu Y, Lu S. Heart protective effects and mechanism of quercetin preconditioning on anti-myocardial ischemia reperfusion (IR) injuries in rats. Gene. 2014;545(1):149-55. https://doi.org/10.1016/j.gene.2014.04.043

Lushchak VI. Glutathione homeostasis and functions: potential targets for medical interventions. J Amino Acids. 2012;2012: 736837. https://doi.org/10.1155/2012/736837

Andreollo NA, Santos EF dos, Araújo MR, Lopes LR. Idade dos ratos versus idade humana: qual é a relação? ABCD, arq bras cir dig. 2012;25: 49-51. https://doi.org/10.1590/S0102-67202012000100011

Published
2022-06-08
How to Cite
Mudjihartini, N., Paramita, R., Siregar, A. M. K., Filzadiyanti, E., Sarsanti, P. A. N., & Purwaningsih, E. (2022). Comparing the effect of Centella asiatica L. and Acalypha indica L. treatment to carbonyl and glutathione level in the brains of old rats. Acta Biochimica Indonesiana, 5(1), 79. https://doi.org/10.32889/actabioina.79