Molecular docking of ferulic acid, bakuchiol and niazirin on peroxisome proliferator-activated receptor gamma (PPAR-γ) as anti-diabetic agents
Abstract
Background: Diabetes mellitus remains one of the most dangerous illnesses worldwide. The PPAR-gamma protein plays a crucial role in lipid and carbohydrate metabolism, making it a key target for diabetes therapy. Research into plant-derived active compounds for diabetes treatment is increasingly important.
Objective: This study aims to evaluate and analyze the interaction of ferulic acid, niazirin, and bakuchiol with the peroxisome proliferator-activated receptor gamma (PPAR-γ) protein using molecular docking.
Methods: Molecular docking was employed to assess the interactions between ferulic acid, niazirin, bakuchiol, and the PPAR-γ protein (PDB ID: 2PRG). The analysis focused on binding free energy values, amino acid residue interactions, the number of hydrogen bonds, and bond distances, comparing these results to those of the native ligand and pioglitazone, a known anti-diabetic drug targeting PPAR-γ.
Results: The binding free energies for the ferulic acid-PPAR-γ, bakuchiol-PPAR-γ, niazirin-PPAR-γ, native ligand-PPAR-γ, and pioglitazone-PPAR-γ complexes were -5.54 kcal/mol, -8.47 kcal/mol, -6.56 kcal/mol, -10.08 kcal/mol, and -9.94 kcal/mol, respectively. The amino acid residue similarity percentages with the native ligand were 18.18% for ferulic acid, 27.27% for bakuchiol, 18.18% for niazirin, and 81.82% for pioglitazone. The native ligand-2PRG and pioglitazone-2PRG complexes exhibited superior hydrogen bond numbers and shorter bond distances compared to the other compounds.
Conclusion: Although bakuchiol showed the most promising interaction among the tested compounds, none surpassed the binding affinity and stability of the native ligand or pioglitazone. Further research is needed to optimize these compounds for potential anti-diabetic therapy.
References
Istianah I, Septiani, Dewi GK. Mengidentifikasi Faktor Gizi pada Pasien Diabetes Mellitus Tipe 2 di Kota Depok Tahun 2019. Jurnal Kesehatan Indonesia. 2020;10:72-78.
Astutisari IDAEC, Darmini AAAY, Wulandari IAP. Hubungan Pola Makan Dan Aktivitas Fisik Dengan Kadar Gula Darah Pada Pasien Diabetes Melitus Tipe 2 Di Puskesmas Manggis I. Jurnal Riset Kesehatan Nasional. 2022;6(2):79-87. https://doi.org/10.37294/jrkn.v6i2.350
Priya SS, Sankaran R, Ramalingam S, Sairam T, Somasundaram LS. Genotype Phenotype Correlation of Genetic Polymorphism of PPAR Gamma Gene and Therapeutic Response to Pioglitazone in Type 2 Diabetes Mellitus- A Pilot Study. J Clin Diagn Res. 2016 Feb;10(2):FC11-4. https://doi.org/10.7860/JCDR/2016/16494.7331
Medina-Gomez G, Gray S, Vidal-Puig A. Adipogenesis and lipotoxicity: role of peroxisome proliferator-activated receptor gamma (PPARgamma) and PPARgammacoactivator-1 (PGC1). Public Health Nutr. 2007;10:1132-7. https://doi.org/10.1017/S1368980007000614
Berger J, Moller DE. The mechanisms of action of PPARs. Annu Rev Med. 2002;53:409-35. https://doi.org/10.1146/annurev.med.53.082901.104018
Sokkar S, El-Sharnouby JA, Helmy A, El-Bendary A, Ahmad LS, Okasha K. Role of Peroxisome Proliferator-Activated Receptor gamma2 (PPAR-γ g2) Gene Polymorphism in Type 2 Diabetes Mellitus. European Journal of General Medicine Eur J Gen Med. 2009. https://doi.org/10.29333/ejgm/82645
Marx N, Froehlich J, Siam L, Ittner J, Wierse G, Schmidt A, et al. Antidiabetic PPARγ-activator rosiglitazone reduces MMP-9 serum levels in type 2 diabetic patients with coronary artery disease. Arterioscler Thromb Vasc Biol. 2003;23: 283-288. https://doi.org/10.1161/01.ATV.0000054195.35121.5E
Srinivasan M, Sudheer AR, Menon VP. Ferulic Acid: therapeutic potential through its antioxidant property. J Clin Biochem Nutr. 2007;40(2):92-100. https://doi.org/10.3164/jcbn.40.92
Bluemke A, Ring AP, Immeyer J, Hoff A, Eisenberg T, Gerwat W, et al. Multidirectional activity of bakuchiol against cellular mechanisms of facial ageing - Experimental evidence for a holistic treatment approach. Int J Cosmet Sci. 2022;44: 377-393. https://doi.org/10.1111/ics.12784
Chiș A, Noubissi PA, Pop OL, Mureșan CI, Fokam Tagne MA, Kamgang R, et al. Bioactive Compounds in Moringa oleifera: Mechanisms of Action, Focus on Their Anti-Inflammatory Properties. Plants; 2024. https://doi.org/10.3390/plants13010020
Pitaloka AD, Nurhijriah CY, Musyaffa HA, Azzahra AM. Indonesian Journal of Biological Pharmacy Molecular Docking of Chemical Constituents of Dayak Onion (Eleutherine palmifolia (L.) Merr) towards VHR Receptors as Candidates for Cervical Anticancer Drugs. 2023.
Kai QXA, Rumengan IF, Lintang RA, Wullur S, Sumilat DA, Pangkey H, Luntungan HA. Penambatan molekul glutation fauna laut terhadap reseptor dari beberapa penyakit virus. Jurnal Pesisir dan Laut Tropis. 2021;9(2):53-8. https://doi.org/10.35800/jplt.9.2.2021.34853
Yusuf MJ, Widiyana AP, Damayanti DS. Studi in silico afinitas senyawa aktif biji kacang merah (Phaseolus vulgaris) terhadap protein sirtuin-1 (SIRT-1) dan nuclear releating factor-2 (NRF2) untuk mencegah Alzheimer. Jurnal Kedokteran Komunitas. 2022;10(2)
Nur MS, Yudiandani RE, Solikah AN. Potensi Senyawa Chromodoris sebagai Pengikat Reseptor SARS-CoV-2 secara In Silico. Sains dan Matematika. 2022;7(2). https://doi.org/10.26740/sainsmat.v7n2.p70-76
Klara IK, Purwono RM, Achmadi P. Analisis In Silico Senyawa Flavonoid Kayu Secang (Caesalpinia sappan L.) pada Reseptor α-Amilase Sebagai Antihiperglikemik. 2023;11(3). https://doi.org/10.29244/avi.11.3.210-219
Copyright (c) 2024 Authors
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.