Oxidative stress and antioxidant status among the elderly in Jakarta
Abstract
Background: Indonesia is experiencing a demographic shift, with the elderly population comprising 9.92% (26.82 million) of the total population, 8.21% of whom reside in Jakarta. Oxidative stress is a key contributor to the development of degenerative diseases associated with aging, while antioxidant defenses can mitigate its effects.
Objective: This study aimed to assess oxidative stress levels, measured by malondialdehyde (MDA), and antioxidant status, including catalase, reduced glutathione (GSH), and vitamin C, in the elderly population of Jakarta.
Methods: A cross-sectional study was conducted with 91 elderly participants from three sub-districts in Jakarta. Erythrocyte lysate samples were analyzed to measure MDA, catalase, and GSH levels, while plasma was used to measure vitamin C. All parameters were quantified using a spectrophotometer. MDA levels and antioxidant status were categorized based on age, blood pressure, and the number of chronic diseases, with statistical analysis performed using the Kruskal-Wallis test.
Results: The median MDA level was 2.68 (1.61–5.64) nmol/mL, with the highest levels observed in participants aged 60–64 and those with three chronic diseases. The mean catalase level was 2.41 ± 0.39 U/mL, the median GSH level was 6.16 (2.02–128.07) µmol/mL, and the mean vitamin C level was 10.87 ± 4.9 µg/mL. No significant differences in antioxidant status were observed based on age, blood pressure, or the number of chronic diseases.
Conclusion: Oxidative stress is prevalent in the elderly and is particularly influenced by the presence of multiple chronic diseases. However, antioxidant status does not significantly vary with age, blood pressure, or disease burden in this population.
References
World Health Organization. Ageing and health [Internet]. Geneva: World Health Organization. 2021 [cited 2022 Feb 24]. Available from: https://www.who.int/news-room/fact-sheets/detail/ageing-and-health
Kementrian Kesehatan RI. Indonesia masuki periode aging population -sehat negeriku [Internet]. 2019 [cited 2021 Oct 26]. Available from:https://sehatnegeriku.kemkes.go.id/baca/rilismedia/20190704/4530734/indonesia-masuki-periode-aging-population/
Badan Pusat Statistik. Statistik penduduk lanjut usia 2020. Jakarta: Badan Pusat Statistik; 2020.
Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, et al. Oxidative stress: harms and benefits for human health. Oxid Med Cell Longev. 2017:463-93. https://doi.org/10.1155/2017/8416763
Pole A, Dimri M, Dimri GP. Oxidative stress, cellular senescence and ageing. AIMS Mol Sci. 2016;3(3):300-24. https://doi.org/10.3934/molsci.2016.3.300
Kumari R, Jat P. Mechanisms of cellular senescence: cell cycle arrest and senescence associated secretory phenotype. Front Cell Dev Biol. 202;9. https://doi.org/10.3389/fcell.2021.645593
Yoshikawa T, Naito Y. What Is Oxidative Stress?. JMAJ. 2002;45(7).
Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, et al. Oxidative stress, aging, and diseases. Clin Interv Aging. 2018;13:757-72. https://doi.org/10.2147/CIA.S158513
Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev. 2014;2014. https://doi.org/10.1155/2014/360438
Yang X, Li Y, Li Y, Ren X, Zhang X, Hu D, et al. Oxidative stress-mediated atherosclerosis: mechanisms and therapies. Front Physiol. 2017;8(AUG). https://doi.org/10.3389/fphys.2017.00600
Nandi A, Yan L, Jana CK, Das N. Role of catalase in oxidative stress- and age-associated degenerative diseases. Oxid. Med. Cell. Longev. 2019;11:2019. https://doi.org/10.1155/2019/9613090
Lubos E, Loscalzo J, Handy DE. Gluthathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal. 2011;15(1): 1957-1997. https://doi.org/10.1089/ars.2010.3586
Forman HJ, Zhang H, Rinna A. Gluthathione: overview of its protective roles, measurement, and biosynthesis. Mol Aspects Med. 2009; 30(1-2): 1-12 https://doi.org/10.1016/j.mam.2008.08.006
Padayatty SJ, Levine M. Vitamin C physiology: the known and the unknown and Goldilocks. Curr Hypertens Rev. 2016;22(6):462-93. https://doi.org/10.1111/odi.12446
University OS. Micronutrients for older adults [Internet]. 2022 [cited 2022 Jul 29]. Available from: https://lpi.oregonstate.edu/mic/life-stages/olderadults#
di Micco R, Krizhanovsky V, Baker D, d'Adda di Fagagna F. Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat Rev Mol Cell Biol. 2021;22(2):75-95. https://doi.org/10.1038/s41580-020-00314-w
Winterbourn C.C. Toxicity of iron and hydrogen peroxide: The Fenton reaction. Toxicol. Lett. 1995;82-83:969-974. https://doi.org/10.1016/0378-4274(95)03532-X
Padayatty SJ, Levine M. Vitamin C physiology: the known and the unknown and Goldilocks. Curr Hypertens Rev. 2016;22(6):462-93. https://doi.org/10.1111/odi.12446
Nurul KA, Erfi P, Silvia HN. Correlation between age, body mass index, and blood selenium level with glutathione peroxidase activity among elderly in south jakarta. Int J Hum Heal Sci. 2020;04(02):3-7. http://dx.doi.org/10.31344/ijhhs.v4i2.181
Hardiany NS, Karman AP, Calista ASP, Anindyanari BG, Rahardjo DE, Novira PR, et al. The Effect of Fasting on Oxidative Stress in the Vital Organs of New Zealand White Rabbit. Rep Biochem Mol Biol. 2022;11(2):190-199. https://doi.org/10.32889/actabioina.112
Hardiany NS, Sucitra S, Paramita R. Profile of malondialdehyde (MDA) and catalase specific activity in plasma of elderly woman. Health Sci J Indones. 2020;10(2):132-6. https://doi.org/10.22435/hsji.v12i2.2239
Akter A, Mamun SA, Rizwan A, Talukder IJ, Mamataj S. Malondialdehyde level as oxidative stress in geriatric population in Bangladesh. M Abdur Rahim Medical College Journal. 2022;15(2):198-201.
Muralidharan N, Bhat T, Kumari SN. A study on effect of ageing on the levels of total antioxidant and lipid peroxidation. IJCMR. 2017;4(12):8-10.
Sunita R, Sahidan S, Hidayat R. Evaluation of malondialdehyde in type 2 diabetes mellitus patients as oxidative stress markers in Bengkulu population. Bio Sc Med. 2020;4(3):45-54. https://doi.org/10.32539/bsm.v4i3.146
Sreenivasulu U, Prasad BRS, Durga T. Study of serum malondialdehyde levels in chronic renal failure patients: a hospital based study in govt. general hospital, Anantapuramu, Andhra Pradesh. Int J Clin Biochem Res. 2020;7(1):138-41. https://doi.org/10.18231/j.ijcbr.2020.028
Khan MA, Baseer A. Increased malondialdehyde levels in coronary heart disease. J Pak Med Assoc. 2000;50(8):261-4.
Armas-Padilla MC, Armas-Hernández MJ, Sosa-Canache B, Cammarata R, Pacheco B, Guerrero J, et al. Nitric oxide and malondialdehyde in human hypertension. Am J Ther. 2007;14(2):172-6. https://doi.org/10.1097/01.pap.0000249914.75895.48
Verma MK, Jaiswal A, Sharma P, Kumar P, Singh AN. Oxidative stress and biomarker of TNF-α, MDA, and FRAP in hypertension. J Med Life. 2019;12(3):253-9. https://doi.org/10.25122/jml-2019-0031
Hasan AA, Sayyah SG. Oxidative stress marker malondialdehyde and glutathione antioxidant in hypertensive patient. Eur J Biomed Res. 2023;2(1):31-6. https://doi.org/10.24018/ejbiomed.2023.2.1.47
Lacy F, Kailasam MT, O'Conner DT, Schmid-Schönbein GW, Parmer RJ. Plasma hydrogen peroxide production in human essential hypertension: role of heredity, gender, and ethnicity. Hypertension. 2000; 36: 878-884. https://doi.org/10.1161/01.HYP.36.5.878
Reckelhoff JF. Gender differences in the regulation of blood pressure. Hypertension. 2001; 37: 1199-1208. https://doi.org/10.1161/01.HYP.37.5.1199
Pikilidou MI, Scuteri A, Morrell C, Lakatta EG. The burden of obesity on blood pressure is reduced in older persons: the Sardinia study. Obesity (Silver Spring). 2013 Jan; 21(1): E10-E13. https://doi.org/10.1002/oby.20010
Griendling KK, Camargo LL, Rios FJ, Alves-Lopes R, Montezano AC, Touyz RM. Oxidative stress and hypertension. Circulation Research. 2021; 128: 993-1020. https://doi.org/10.1161/CIRCRESAHA.121.318063
Lubos E, Loscalzo J, Handy DE. Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal. 2011;15(7): 1957-1997. https://doi.org/10.1089/ars.2010.3586
Kalinovic S, Stamm P, Oelze M, Daub S, Kroller-Schon S, Kvandova M, et al. Comparison of three methods for in vivo quantification of glutathione in tissues of hypertensive rats. Free Radical Research. 2021;55(11-12): 1048-61. https://doi.org/10.1080/10715762.2021.2016735
Rybka J, Kupczyk D, Kedziora-Kornatowska K, Motyl J, Czuczejko J, Szewczyk-Golec K, et al. Glutathione-related antioxidant defense system in elderly patients treated for hypertension. Cardiovasc Toxicol. 2011;11(1):1-9. https://doi.org/10.1007/s12012-010-9096-5
Schulz JB, Lindenau J, Seyfried J, Dichgans J. Glutathione, oxidative stress and neurodegeneration. Eur. J. Biochem. 2000;267:4904-4911. https://doi.org/10.1046/j.1432-1327.2000.01595.x
M Abdullah, RT Jamil FA. Vitamin C (ascorbic acid). Vol. 3, Encyclopedia of Toxicology. 2022. 962-963 p. https://doi.org/10.1016/B978-0-12-386454-3.01250-1
Travica N, Ried K, Hudson I, Sali A, Scholey A, Pipingas A. Gender differences in plasma vitamin C concentrations and cognitive function: A pilot cross-Sectional study in healthy adults. Curr Dev Nutr.2020;4(4):nzaa038. https://doi.org/10.1093/cdn/nzaa038
Ran L, Zhao W, Tan X, Wang H, Mizuno K, Takagi K, et al. Association between serum vitamin C and the blood pressure: a systematic review and meta-analysis of observational studies. Cardiovasc Ther. 2020;2020:4940673. https://doi.org/10.1155/2020/4940673
Guan Y, Dai P, Wang H. Effects of vitamin C supplementation on essential hypertension A systematic review and meta-analysis. Medicine. 2020;99(8):e19274. https://doi.org/10.1097/MD.0000000000019274

Copyright (c) 2024 Authors

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.