Mechanism of modified mRNA structure in COVID-19 vaccines for inducing neutralizing antibodies

Keywords: mRNA vaccine, neutralizing antibody, SARS-CoV-2

Abstract

The development of SARS-CoV-2 mRNA vaccines is closely linked to advancements in mRNA manufacturing technology. Structural modifications, such as replacing uridine with 1-methylpseudouridine (1mψ), enhance translation efficiency and help the mRNA evade immune detection. Lipid nanoparticles (LNPs) serve as an effective delivery system. Vaccines like BNT162b2 and mRNA-1273 target the receptor-binding domain (RBD) of the spike (S) protein, prompting B cells to produce neutralizing antibodies that block the RBD from binding to the Angiotensin-Converting Enzyme 2 (ACE2) receptor, preventing infection. These vaccines also stimulate adaptive immune responses by activating CD4+ and CD8+ T cells, with mRNA functioning as an endogenous antigen. Antigen-presenting cells (APCs) present the vaccine antigens via major histocompatibility complex (MHC) class I and II pathways, with CD8+ T cells recognizing MHC class I and destroying infected cells, while CD4+ T cells recognize MHC class II and assist in B cell maturation and antibody production. While mRNA vaccines have proven effective in neutralizing SARS-CoV-2, challenges remain, including the decline in neutralizing antibody titers over time and the emergence of new viral variants.

References

Sánchez-Zuno GA, Matuz-Flores MG, González-Estevez G, Nicoletti F, Turrubiates-Hernández FJ, Mangano K, et al. Antibody-dependent enhancement in COVID-19: The not so friendly side of antibodies. Int J Immunopathol Pharmacol. 2021;35:1-15. https://doi.org/10.1177/20587384211050199

World Health Organization. WHO coronavirus (Covid-19) dashboard [Internet]. 2022 [cited 2022 Jan 31]. Available from: https://covid19.who.int/

World Health Organization. WHO Coronavirus (COVID-19) in Indonesia [Internet]. 2022 [cited 2022 Jan 31]. Available from: https://covid19.who.int/region/searo/country/id

Kementerian Kesehatan RI. Waspadai subvarian omicron (BA.4 dan BA.5) [Internet]. 2022 [cited 2022 Aug 20]. Available from: https://upk.kemkes.go.id/new/waspadai-subvarian-omicron-ba4-dan-ba5

Centers for Disease Control and Prevention. Immune response to infection and vaccination [Internet]. 2021 [cited 2022 Feb 1]. Available from: https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/vaccine-induced-immunity.html

Nagy A, Alhatlani B. An overview of current COVID-19 vaccine platforms. Comput Struct Biotechnol J. 2021;19:2508-17. https://doi.org/10.1016/j.csbj.2021.04.061

Eyre DW, Taylor D, Purver M, Chapman D, Fowler T, Pouwels KB, et al. Effect of COVID-19 vaccination on transmission of Alpha and Delta variants. N Engl J Med. 2022;386(8):744-56. https://doi.org/10.1056/NEJMoa2116597

Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med. 2021;384(5):403-16. https://doi.org/10.1056/NEJMoa2035389

Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med. 2020;383(27):2603-15. https://doi.org/10.1056/NEJMoa2034577

Minnaert A, Vanluchene H, Verbeke R, Lentacker I, De Smedt SC. Strategies for controlling the innate immune activity of conventional and self-amplifying mRNA therapeutics: Getting the message across. Adv Drug Deliv Rev. 2021;176:113900. https://doi.org/10.1016/j.addr.2021.113900

Abbasi J. COVID-19 and mRNA vaccines—First large test for a new approach. JAMA. 2020;324(12):1125-7. https://doi.org/10.1001/jama.2020.16866

Casadevall A. The mRNA vaccine revolution is the dividend from decades of basic science research. J Clin Invest. 2021;131(19). https://doi.org/10.1172/JCI153721

Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines—a new era in vaccinology. Nat Rev Drug Discov. 2018;17(4):261-79. https://doi.org/10.1038/nrd.2017.243

Kim SC, Sekhon SS, Shin WR, Ahn G, Cho BK, Ahn JY, et al. Modifications of mRNA vaccine structural elements for improving mRNA stability and translation efficiency. Mol Cell Toxicol. 2022;18(1):1-8. https://doi.org/10.1007/s13273-021-00171-4

Wayment-Steele HK, Kim DS, Choe CA, Nicol JJ, Wellington-Oguri R, Watkins AM, et al. Erratum: Theoretical basis for stabilizing messenger RNA through secondary structure design. Nucleic Acids Res. 2021;49(19):11405. https://doi.org/10.1093/nar/gkab911

Mauro VP, Chappell SA. A critical analysis of codon optimization in human therapeutics. Trends Mol Med. 2014;20(11):604-13. https://doi.org/10.1016/j.molmed.2014.09.003

Mauger DM, Cabral BJ, Presnyak V, Su SV, Reid DW, Goodman B, et al. mRNA structure regulates protein expression through changes in functional half-life. Proc Natl Acad Sci USA. 2019;116(48):24075-83. https://doi.org/10.1073/pnas.1908052116

Adachi H, Hengesbach M, Yu YT, Morais P. From antisense RNA to RNA modification: Therapeutic potential of RNA-based technologies. Biomedicines. 2021;9(5):550. https://doi.org/10.3390/biomedicines9050550

Morais P, Adachi H, Yu YT. The critical contribution of pseudouridine to mRNA COVID-19 vaccines. Front Cell Dev Biol. 2021;9:789427. https://doi.org/10.3389/fcell.2021.789427

Karikó K, Ni H, Capodici J, Lamphier M, Weissman D. mRNA is an endogenous ligand for Toll-like receptor 3. J Biol Chem. 2004;279(13):12542-50. https://doi.org/10.1074/jbc.M310175200

Leppek K, Das R, Barna M. Functional 5' UTR mRNA structures in eukaryotic translation regulation and how to find them. Nat Rev Mol Cell Biol. 2018;19(3):158-74. https://doi.org/10.1038/nrm.2017.103

Corbett KS, Edwards DK, Leist SR, Abiona OM, Boyoglu-Barnum S, Gillespie RA, et al. SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature. 2020;586(7830):567-71. https://doi.org/10.1038/s41586-020-2622-0

Schoenmaker L, Witzigmann D, Kulkarni JA, Verbeke R, Kersten G, Jiskoot W, et al. mRNA-lipid nanoparticle COVID-19 vaccines: Structure and stability. Int J Pharm. 2021;601:120586.https://doi.org/10.1016/j.ijpharm.2021.120586

Dolgin E. The tangled history of mRNA vaccines. Nature. 2021;597(7876):318-24. https://doi.org/10.1038/d41586-021-02483-w

Evers MJW, Kulkarni JA, van der Meel R, Cullis PR, Vader P, Schiffelers RM. State-of-the-art design and rapid-mixing production techniques of lipid nanoparticles for nucleic acid delivery. Small Methods. 2018;2(9):1700375. https://doi.org/10.1002/smtd.201700375

Sebastiani F, Yanez Arteta M, Lerche M, Porcar L, Lang C, Bragg RA, et al. Apolipoprotein E binding drives structural and compositional rearrangement of mRNA-containing lipid nanoparticles. ACS Nano. 2021;15(4):6709-22. https://doi.org/10.1021/acsnano.0c10064

Bettini E, Locci M. SARS-CoV-2 mRNA vaccines: Immunological mechanism and beyond. Vaccines. 2021;9(2):147. https://doi.org/10.3390/vaccines9020147

Wang F, Kream RM, Stefano GB. An evidence-based perspective on mRNA-SARS-CoV-2 vaccine development. Med Sci Monit. 2020;26. https://doi.org/10.12659/MSM.924700

Sallusto F, Lanzavecchia A, Araki K, Ahmed R. From vaccines to memory and back. Gerontology. 2010;56(2):228-40. https://doi.org/10.1016/j.immuni.2010.10.008

Crotty S. A brief history of T cell help to B cells. Nat Rev Immunol. 2015;15(3):185-9. https://doi.org/10.1038/nri3803

Appendix S, Efficacy C, Authorization EU. SARS-CoV-2 Omicron variant neutralization after mRNA-1273 booster vaccination. N Engl J Med. 2022;1-4. https://doi/org/10.1056/NEJMc2119912

Gruell H, Vanshylla K, Tober-Lau P, Hillus D, Schommers P, Lehmann C, et al. mRNA booster immunization elicits potent neutralizing serum activity against the SARS-CoV-2 Omicron variant. Nat Med. 2022;28(3):477-80. https://doi.org/10.1038/s41591-021-01676-0

Published
2024-10-03
How to Cite
Zanjabila, S., & Dewi, B. E. (2024). Mechanism of modified mRNA structure in COVID-19 vaccines for inducing neutralizing antibodies. Acta Biochimica Indonesiana, 7(2), 121. https://doi.org/10.32889/actabioina.121