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Introduction
Recent advancements of nanomaterials have 

been focused on applications in nanomedicine 
and nanotechnology based on their outstanding 
chemical and physical properties [1-14]. Among 
these nanomaterials, metal nanoclusters (NCs) 
composed of several to hundreds of metal atoms 
with unique structural and optical characteristics 
have been extensively demonstrated for the research 
fields in imaging, detection, and therapy [15-17]. 
Great efforts have been made to prepare fluorescent 
metal NCs using various surface ligands, including 

small molecules, polymers, and biomacromolecules 
[18]. For example, gold nanoclusters (AuNCs) 
conjugated with the surface ligand of glucose have 
been demonstrated as a target-specific fluorescent 
probe to analyze the glucose metabolism in the 
glucose transporter overexpressed brain cancer cells 
[19]. Fluorescent AuNCs and silver nanoclusters 
(AgNCs) with surface modification of reactive oxygen 
species (ROS) scavenger of cysteine have been 
exploited as a highly biocompatible probe for 
confocal microscopy [20]. The thiol-modified liquid 
crystal of 4’-(2-mercaptoethyl)-(1,1’-biphenyl)-4-
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carbonitrile has been applied as a surface ligand to 
prepare fluorescent AuNCs [21]. Fluorescent copper 
nanoclusters (CuNCs) modified with DNA have 
been utilized for sensitively fluorimetric detection 
of the mismatch type in a specific DNA sequence 
for the diagnosis and risk assessment of cancer in 
the early stage[22]. These metal nanoclusters with 
different surface modifications, including amino 
acids, polymers, peptides, antibodies, DNA, and so 
forth, have revealed outstanding biocompatibility, 
excellent photostability, and high water solubility 
for biomedical applications in theranostics.

Various metal NCs have been demonstrated 
as promising antibacterial agents due to their 
ultrasmall sizes to increase interaction with bacteria 
[23-25]. For example, AuNCs conjugated with 
6-mercaptohexanoic acid (MHA) have shown higher 
antibacterial activity in comparison with MHA 
conjugated gold nanoparticles and the complexes of 
Au(I)-MHA against Gram-negative Escherichia coli 
(E. coli) and Gram-positive Staphylococcus aureus (S. 
aureus) [26]. The amino acid of cysteine-conjugated 
AuNCs have exhibited antibacterial activity because 
of the significant increase of intracellular ROS 
induced by cysteine-conjugated AuNCs in bacteria 
[27]. The bacitracin-conjugated AuNCs. AgNCs and 
CuNCs have been validated the antibacterial activities 
because of the destruction of the bacterial cell wall 
and the increase of intracellular ROS generation 
[28]. Real-time observation has demonstrated the 
antibacterial mechanism between the surface ligand 
of glutathione conjugated AuNCs and bacteria by 
in situ liquid cell transmission electron microscopy 
(TEM) [29]. Although the intensive achievements 
studies have proven the antibacterial activity of 
metal NCs, there are only very few studies to 
demonstrate the cancer therapy using metal NCs.

The investigation of cancer therapy is an urgent 
task for biomedical applications based on metal 
nanoclusters. Herein, AuNCs conjugated with the 
surface ligand of antibody were developed to 
demonstrate their application in cancer therapy. 
Carcinoembryonic antigen-related cell adhesion 
molecule 6 (CEACAM6) is overexpressed in many 
cancer cells [30]. In this work, a single domain 
antibody targeting CEACAM6, 2A3, was utilized as 

a surface ligand to prepare 2A3 conjugated AuNCs 
(2A3-AuNCs). Structural and optical properties 
were characterized by TEM, ultraviolet-visible (UV-
Vis) spectroscopy, and fluorescence spectroscopy. 
The cytotoxicities of 2A3-AuNCs incubated with 
Vero, MDA-MB-231, and MDA-MB-468 cells were 
respectively examined by resazurin dye reduction 
assay. To investigate the death of cells, 2A3-
AuNCs incubated with Vero, MDA-MB-231, and 
MDA-MB-468 cells were separately measured by 
fluorescence images.

Methods
Preparation of 2A3 conjugated gold nanoclusters

The 2A3 antibody was synthesized according 
to previous literature [30]. In this work, 2A3-
AuNCs were synthesized by a facile hydrothermal 
approach. For preparing 2A3-AuNCs, 1 mL of HAuCl4 
aqueous solution was first added to a sample 
vial. Then 2 mL of 2A3 antibody solution was 
added to the sample vial with HAuCl4 aqueous 
solution under vigorous stirring. Afterward, 3 m 
µL of 1 mM NaOH aqueous solution was added 
to the sample vial. After stirring for one week 
in the dark, the solution containing 2A3-AuNCs 
was obtained. For purifying step, the solution 
of 2A3-AuNCs was centrifuged at 15000 rpm 
at 4 °C for 10 min. The supernatant solution 
containing 2A3-AuNCs was then stored at 4 °C 
for the following experiments.

Cell viability assay of 2A3-AuNCs
Kidney epithelial Vero cells, breast cancer MDA-

MB-231 cells, and breast cancer MDA-MB-468 
cells were cultured in Dulbecco’s modified Eagle 
medium (DMEM) with 10% (v/v) fetal bovine 
serum (FBS). For cell culture, Vero, MDA-MB-231, 
and MDA-MB-468 cells were cultured in 96-well 
plates for 24 h and then washed twice with a 
phosphate-buffered saline (PBS) solution. Afterward, 
Vero, MDA-MB-231, and MDA-MB-468 cells in 
96-well plates were respectively incubated with 
2A3-AuNC solutions (270, 135, 67.5, 33.75, 16.88, 
8.44, 4.22, 2.11, and 1.05 μg/mL). The sterilized 
water was used for the control experiments. The 
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cell viabilities of Vero, MDA-MB-231, and MDA-
MB-468 cells incubated with 2A3-AuNCs were 
measured by resazurin dye reduction assay. After 
incubating 2A3-AuNCs with Vero, MDA-MB-231, and 
MDA-MB-468 cells for 24 h, the resazurin (final 
concentration of 0.02 mg/mL) was added to each 
well of the 96-well plates and then incubated for 
4 h. The absorbances at 570 and 600 nm were 
measured by a plate reader. The cell viability 
assay was replicated eight times for each cell line.

Analysis of cell death by fluorescence imaging
SYTOX green nucleic acid stain was applied to 

stain dead cells by fluorescence imaging. Herein, 
SYTOX green nucleic acid stain (5 μM) was added 
to cells and then the cells, and SYTOX green 
nucleic acid stain were incubated in a shaker 
at 200 rpm and 37 °C for 15 min in the dark. 
Afterward, the solution of SYTOX green nucleic 
acid stain was carefully removed and the cells 
were further washed by medium for three times. 
Sequentially, Hoechst 33342 nucleic acid stain 
(1 μg/mL) was added to stain total cells. After 
incubation of cells and Hoechst 33342 nucleic 
acid stain in a shaker at 200 rpm and 37 °C for 
10 min in dark, the solution of Hoechst 33342 
nucleic acid stain was carefully removed and the 
cells were further washed by medium for three 
times. The cells stained by SYTOX green nucleic 
acid stain and Hoechst 33342 nucleic acid stain 
were observed using microscope (Leica DM1000). 

To obtain better image contrast, we assigned a 
false green for the fluorescence of SYTOX stain 
channel and a false blue for the Hoechst 33342 
stain channel.

Results 
Structural characterizations of 2A3-AuNCs

TEM (Hitachi HT-7700) was applied to examine 
the shape of 2A3-AuNCs. As shown in the TEM 
image of Figure 1a, the shape of 2A3-AuNCs 
exhibited a roughly spherical shape. Furthermore, 
a histogram was systematically calculated the 
size distribution of 2A3-AuNCs based on 100 
nanoclusters in the TEM image of Figure 1a as 
shown in Figure 1b. A Gaussian fitting curve of 
Figure 1b was simulated, and the result of the 
Gaussian fitting curve indicated that the average 
size of 2A3-AuNCs was calculated to be 2.35 nm.

Optical properties of 2A3-AuNCs
UV-Vis absorption spectrometer (Jasco V-770) 

and fluorescence spectrometer (Jasco FP-8500) 
were applied to further examine optical properties 
to characterize 2A3-AuNCs. As shown in Figure 2a, 
the absorption spectrum of 2A3-AuNCs showed no 
surface plasmon absorption. The disappearance 
of the surface plasmon absorption of 2A3-AuNCs 
can be attributed to that 2A3-AuNCs exhibited 
high gold oxidation states to result in a lack 
of free electrons for the generation of coherent 

Figure 1. Structural characterizations of 2A3-AuNCs. (a) TEM image of 2A3-AuNCs and (b) histogram of the nanocluster size 
distribution of 2A3-AuNCs and its Gaussian fitting curves.
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oscillations [31]. Moreover, the fluorescence 
spectrum of 2A3-AuNCs revealed a maximum 
fluorescence intensity at 350 nm, as shown in 
Figure 2b. The fluorescence quantum yield of 
2A3-AuNCs was 4.0% by integrating the sphere 
(Jasco ILF-835). The fluorescence of 2A3-AuNCs 
can be ascribed to the fluorescent mechanism 
of aggregation-induced emission (AIE). Several 
reports have proven that the AIE fluorescence of 
AuNCs is caused by the aggregation of Au(I) and 
ligand on the surface of AuNCs [32-34]. Overall, 
structural and optical characterizations of 2A3-
AuNCs confirmed that the facile hydrothermal 
approach successfully synthesized fluorescent 
2A3-AuNCs.

Cell viability of 2A3-AuNCs
To examine the potential for cancer therapy, 

the cell viabilities of 2A3-AuNCs were respectively 
evaluated in Vero, MDA-MB-231, and MDA-
MB-468 cells. The water-soluble 2A3-AuNCs with 
different concentrations (270, 135, 67.5, 33.75, 
16.88, 8.44, 4.22, 2.11, and 1.05 μg/mL) were 
prepared to investigate their cytotoxicities. As 
shown in Figure 3, the resazurin dye reduction 
assay revealed high cell viabilities (>80%) for 
2A3-AuNCs. However, for MDA-MB-231 and MDA-
MB-468 cells with overexpressed CEACAM6, the 
cell viabilities decreased with the concentration 
of 2A3-AuNCs. The results of cell viabilities of 
2A3-AuNCs indicated that antibody of 2A3 on the 

Figure 2. Optical characterizations of 2A3-AuNCs. (a) UV-Vis absorption spectrum of 2A3-AuNCs and (b) Fluorescence spectrum 
of 2A3-AuNCs.

Figure 3. Cell viability assay of 2A3-AuNCs. Cell viabilities by the resazurin dye reduction assay with the concentration range 
from 1.05 to 270 μg/mL of 2A3-AuNCs in Vero, MDA-MB-231, and MDA-MB-468 cells. The sterilized water was used in the 
control experiments.
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surface of 2A3-AuNCs could target onto CEACAM6 
overexpressed MDA-MB-231 and MDA-MB-468 
cells and then inhibit the growth of MDA-MB-231 
and MDA-MB-468 cells.

Investigation of cell death induced by 2A3-
AuNCs

To investigate the cell death, fluorescence 
images of cells including Vero, MDA-MB-231, and 
MDA-MB-468 cells were respectively examined 
after incubation with 2A3-AuNCs for 120 min. 
As shown in fluorescence images of Figure 4, the 
total numbers of Vero, MDA-MB-231, and MDA-
MB-468 cells revealed no significant difference. 
Moreover, after incubation with 2A3-AuNCs, no 
significant death of Vero cells was observed in 
the fluorescence image. However, for MDA-MB-231 
and MDA-MB-468 cells, drastic cell deaths were 
observed after incubation with 2A3-AuNCs. The 
results of fluorescence images indicated that 

the ligand of 2A3 on the surface of 2A3-AuNCs 
could inhibit the growths of cancer cells with 
CEACAM6 overexpressed MDA-MB-231 and MDA-
MB-468 cells.

Discussion 
The treatment of cancer is an urgent issue 

for biomedical applications based on metal 
nanoclusters. Herein, the 2A3-AuNCs were 
synthesized to inhibit cancer cells by the facile 
hydrothermal approach. The structural and 
optical properties of 2A3-AuNCs confirmed the 
successful preparation of fluorescent 2A3-AuNCs 
with the roughly spherical shape and the size of 
2.35 nm by the facile hydrothermal approach. 
The cell viability assay demonstrated that 2A3-
AuNCs could inhibit the growths of cancer cells, 
including MDA-MB-231 and MDA-MB-468 breast 
cells. The fluorescence images also indicated 
that 2A3-AuNCs could inhibit the growths of 

Figure 4. Cell death assay of 2A3-AuNCs. Fluorescence images of 2A3-AuNCs incubated with Vero, MDA-MB-231, and MDA-
MB-468 cells for 120 min. The blue and green pseudocolors represent the fluorescent signals of total cells (stained with Hoechst 
33342) and dead cells (stained with SYTOX green), respectively. The scale bars were 1mm.
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cancer cells of MDA-MB-231 and MDA-MB-468 
breast cells. Based on the similar results of cell 
viability assay and fluorescence imaging, the 
surface ligand of 2A3 antibody on 2A3-AuNCs 
exhibited significant inhibition of cancer cells with 
CEACAM6 overexpressed, including MDA-MB-231 
and MDA-MB-468 breast cells. For further clinical 
application, the in vivo studies of 2A3-AuNCs 
are still needed in the future.

Conclusion
In conclusion, fluorescent 2A3-AuNCs were 

successfully prepared by the facile hydrothermal 
approach. The optical and structural characterizations 
of 2A3-AuNCs were demonstrated by TEM image 
and UV-Vis spectrum. The results of the cell viability 
assay confirmed that 2A3-AuNCs revealed cancer 
cell inhibition for CEACAM6 overexpressed MDA-
MB-231 and MDA-MB-468 cells. The results of 
fluorescence imaging also indicated that the 2A3 
antibody on the surface of 2A3-AuNCs showed 
significant cancer cell inhibition for CEACAM6 
overexpressed MDA-MB-231 and MDA-MB-468 
cells. Overall, our studies showed that 2A3-AuNCs 
could be a promising fluorescent probe for the 
detection and therapy in the cancer cell.
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