Acta Biochimica Indonesiana https://doi.org/10.32889/actabioina.69

RESEARCH ARTICLE Open Access |

Inhibition of cancer cells using target-specific
2A3 antibody-conjugated gold nanoclusters

Check for
updates

Jui-Chi Kuo'@®, Tsung-Rong Kuo'? , Erna Susilowati®

Dyah lka Krisnawati*

'Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University,
Taipei 11031, Taiwan

2International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei
11031, Taiwan

3Dharma Husada Nursing Academy, Kediri 64114, Indonesia

"Correspoding author: JI. Penanggungan No.41a, Bandar Lor, Kec. Kota Kediri, Kota Kediri, Jawa Timur 64114, Indonesia.
Email: dyahkrisna77@gmail.com

, Fajar Rinawati® , Sucipto®’®,

ABSTRACT

Background: Metal nanoclusters (NCs) with outstanding structural and optical properties have been intensively
validated for applications in nanomedicine and nanotechnology. Carcinoembryonic antigen-related cell adhesion
molecule 6 (CEACAMS6) is overexpressed in many cancer cells.

Objective: The gold nanoclusters conjugated with a single domain antibody targeting CEACAM6 of 2A3 (2A3-
AuNCs) were synthesized for the inhibition of cancer cells.

Methods: 2A3-AuNCs were prepared via a facile hydrothermal approach. The cell viability was measured by
resazurin dye reduction assay. The cell death was analyzed by fluorescence imaging.

Results: Structural and optical characterizations demonstrated the successful synthesis of 2A3-AuNCs with a roughly
spherical shape and a size of 2.35 nm. The 2A3-AuNCs revealed a maximum fluorescence intensity at 350 nm
with a fluorescence quantum yield of 4.0%. The cell viability assay indicated that 2A3-AuNCs could inhibit the
growths of cancer cells with overexpressed CEACAMS6, including breast cancer MDA-MB-231 and MDA-MB-468
cells. The fluorescence imaging results also demonstrated that 2A3-AuNCs could inhibit the growth of cancer cells
with MDA-MB-231 and MDA-MB-468 cells.

Conclusion: Combination with the results of cell viability assay and fluorescence imaging, the surface ligand of
2A3 antibody on 2A3-AuNCs exhibited promising inhibition of CEACAM6 overexpressed cancer cells. Our work
provides a potential application of AuNCs in cancer therapy.
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Introduction

Recent advancements of nanomaterials have
been focused on applications in nanomedicine
and nanotechnology based on their outstanding
chemical and physical properties [1-14]. Among
these nanomaterials, metal nanoclusters (NCs)
composed of several to hundreds of metal atoms
with unique structural and optical characteristics
have been extensively demonstrated for the research
fields in imaging, detection, and therapy [15-17].
Great efforts have been made to prepare fluorescent
metal NCs using various surface ligands, including
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small molecules, polymers, and biomacromolecules
[18]. For example, gold nanoclusters (AuNCs)
conjugated with the surface ligand of glucose have
been demonstrated as a target-specific fluorescent
probe to analyze the glucose metabolism in the
glucose transporter overexpressed brain cancer cells
[19]. Fluorescent AuNCs and silver nanoclusters
(AgNCs) with surface modification of reactive oxygen
species (ROS) scavenger of cysteine have been
exploited as a highly biocompatible probe for
confocal microscopy [20]. The thiol-modified liquid
crystal of 4’-(2-mercaptoethyl)-(1,1’-biphenyl)-4-
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carbonitrile has been applied as a surface ligand to
prepare fluorescent AuNCs [21]. Fluorescent copper
nanoclusters (CuNCs) modified with DNA have
been utilized for sensitively fluorimetric detection
of the mismatch type in a specific DNA sequence
for the diagnosis and risk assessment of cancer in
the early stage[22]. These metal nanoclusters with
different surface modifications, including amino
acids, polymers, peptides, antibodies, DNA, and so
forth, have revealed outstanding biocompatibility,
excellent photostability, and high water solubility
for biomedical applications in theranostics.

Various metal NCs have been demonstrated
as promising antibacterial agents due to their
ultrasmall sizes to increase interaction with bacteria
[23-25]. For example, AuNCs conjugated with
6-mercaptohexanoic acid (MHA) have shown higher
antibacterial activity in comparison with MHA
conjugated gold nanoparticles and the complexes of
Au(I)-MHA against Gram-negative Escherichia coli
(E. coli) and Gram-positive Staphylococcus aureus (8.
aureus) [26]. The amino acid of cysteine-conjugated
AuNCs have exhibited antibacterial activity because
of the significant increase of intracellular ROS
induced by cysteine-conjugated AuNCs in bacteria
[27]. The bacitracin-conjugated AuNCs. AgNCs and
CuNCs have been validated the antibacterial activities
because of the destruction of the bacterial cell wall
and the increase of intracellular ROS generation
[28]. Real-time observation has demonstrated the
antibacterial mechanism between the surface ligand
of glutathione conjugated AuNCs and bacteria by
in situ liquid cell transmission electron microscopy
(TEM) [29]. Although the intensive achievements
studies have proven the antibacterial activity of
metal NCs, there are only very few studies to
demonstrate the cancer therapy using metal NCs.

The investigation of cancer therapy is an urgent
task for biomedical applications based on metal
nanoclusters. Herein, AuNCs conjugated with the
surface ligand of antibody were developed to
demonstrate their application in cancer therapy.
Carcinoembryonic antigen-related cell adhesion
molecule 6 (CEACAMS6) is overexpressed in many
cancer cells [30]. In this work, a single domain
antibody targeting CEACAMS6, 2A3, was utilized as

a surface ligand to prepare 2A3 conjugated AuNCs
(2A3-AuNCs). Structural and optical properties
were characterized by TEM, ultraviolet-visible (UV-
Vis) spectroscopy, and fluorescence spectroscopy.
The cytotoxicities of 2A3-AuNCs incubated with
Vero, MDA-MB-231, and MDA-MB-468 cells were
respectively examined by resazurin dye reduction
assay. To investigate the death of cells, 2A3-
AuNCs incubated with Vero, MDA-MB-231, and
MDA-MB-468 cells were separately measured by
fluorescence images.

Methods
Preparation of 2A3 conjugated gold nanoclusters

The 2A3 antibody was synthesized according
to previous literature [30]. In this work, 2A3-
AuNCs were synthesized by a facile hydrothermal
approach. For preparing 2A3-AuNCs, 1 mL of HAuCl,
aqueous solution was first added to a sample
vial. Then 2 mL of 2A3 antibody solution was
added to the sample vial with HAuCl, aqueous
solution under vigorous stirring. Afterward, 3 m
uL of 1 mM NaOH aqueous solution was added
to the sample vial. After stirring for one week
in the dark, the solution containing 2A3-AuNCs
was obtained. For purifying step, the solution
of 2A3-AuNCs was centrifuged at 15000 rpm
at 4 °C for 10 min. The supernatant solution
containing 2A3-AuNCs was then stored at 4 °C
for the following experiments.

Cell viability assay of 2A3-AuNCs

Kidney epithelial Vero cells, breast cancer MDA-
MB-231 cells, and breast cancer MDA-MB-468
cells were cultured in Dulbecco’s modified Eagle
medium (DMEM) with 10% (v/v) fetal bovine
serum (FBS). For cell culture, Vero, MDA-MB-231,
and MDA-MB-468 cells were cultured in 96-well
plates for 24 h and then washed twice with a
phosphate-buffered saline (PBS) solution. Afterward,
Vero, MDA-MB-231, and MDA-MB-468 cells in
96-well plates were respectively incubated with
2A3-AuNC solutions (270, 135, 67.5, 33.75, 16.88,
8.44, 4.22, 2.11, and 1.05 pg/mL). The sterilized
water was used for the control experiments. The
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Figure 1. Structural characterizations of 2A3-AuNCs. (a) TEM image of 2A3-AuNCs and (b) histogram of the nanocluster size

distribution of 2A3-AuNCs and its Gaussian fitting curves.

cell viabilities of Vero, MDA-MB-231, and MDA-
MB-468 cells incubated with 2A3-AuNCs were
measured by resazurin dye reduction assay. After
incubating 2A3-AuNCs with Vero, MDA-MB-231, and
MDA-MB-468 cells for 24 h, the resazurin (final
concentration of 0.02 mg/mL) was added to each
well of the 96-well plates and then incubated for
4 h. The absorbances at 570 and 600 nm were
measured by a plate reader. The cell viability
assay was replicated eight times for each cell line.

Analysis of cell death by fluorescence imaging

SYTOX green nucleic acid stain was applied to
stain dead cells by fluorescence imaging. Herein,
SYTOX green nucleic acid stain (5 pM) was added
to cells and then the cells, and SYTOX green
nucleic acid stain were incubated in a shaker
at 200 rpm and 37 °C for 15 min in the dark.
Afterward, the solution of SYTOX green nucleic
acid stain was carefully removed and the cells
were further washed by medium for three times.
Sequentially, Hoechst 33342 nucleic acid stain
(1 pg/mL) was added to stain total cells. After
incubation of cells and Hoechst 33342 nucleic
acid stain in a shaker at 200 rpm and 37 °C for
10 min in dark, the solution of Hoechst 33342
nucleic acid stain was carefully removed and the
cells were further washed by medium for three
times. The cells stained by SYTOX green nucleic
acid stain and Hoechst 33342 nucleic acid stain
were observed using microscope (Leica DM1000).

To obtain better image contrast, we assigned a
false green for the fluorescence of SYTOX stain
channel and a false blue for the Hoechst 33342
stain channel.

Results
Structural characterizations of 2A3-AuNCs

TEM (Hitachi HT-7700) was applied to examine
the shape of 2A3-AuNCs. As shown in the TEM
image of Figure 1a, the shape of 2A3-AuNCs
exhibited a roughly spherical shape. Furthermore,
a histogram was systematically calculated the
size distribution of 2A3-AuNCs based on 100
nanoclusters in the TEM image of Figure 1a as
shown in Figure 1b. A Gaussian fitting curve of
Figure 1b was simulated, and the result of the
Gaussian fitting curve indicated that the average
size of 2A3-AuNCs was calculated to be 2.35 nm.

Optical properties of 2A3-AuNCs

UV-Vis absorption spectrometer (Jasco V-770)
and fluorescence spectrometer (Jasco FP-8500)
were applied to further examine optical properties
to characterize 2A3-AuNCs. As shown in Figure 2a,
the absorption spectrum of 2A3-AuNCs showed no
surface plasmon absorption. The disappearance
of the surface plasmon absorption of 2A3-AuNCs
can be attributed to that 2A3-AuNCs exhibited
high gold oxidation states to result in a lack
of free electrons for the generation of coherent
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Figure 2. Optical characterizations of 2A3-AuNCs. (a) UV-Vis absorption spectrum of 2A3-AuNCs and (b) Fluorescence spectrum

of 2A3-AuNCs.
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Figure 3. Cell viability assay of 2A3-AuNCs. Cell viabilities by the resazurin dye reduction assay with the concentration range
from 1.05 to 270 pg/mL of 2A3-AuNCs in Vero, MDA-MB-231, and MDA-MB-468 cells. The sterilized water was used in the

control experiments.

oscillations [31]. Moreover, the fluorescence
spectrum of 2A3-AuNCs revealed a maximum
fluorescence intensity at 350 nm, as shown in
Figure 2b. The fluorescence quantum yield of
2A3-AuNCs was 4.0% by integrating the sphere
(Jasco ILF-835). The fluorescence of 2A3-AuNCs
can be ascribed to the fluorescent mechanism
of aggregation-induced emission (AIE). Several
reports have proven that the AIE fluorescence of
AuNCs is caused by the aggregation of Au(l) and
ligand on the surface of AuNCs [32-34]. Overall,
structural and optical characterizations of 2A3-
AuNCs confirmed that the facile hydrothermal
approach successfully synthesized fluorescent
2A3-AuNCs.

Cell viability of 2A3-AuNCs

To examine the potential for cancer therapy,
the cell viabilities of 2A3-AuNCs were respectively
evaluated in Vero, MDA-MB-231, and MDA-
MB-468 cells. The water-soluble 2A3-AuNCs with
different concentrations (270, 135, 67.5, 33.75,
16.88, 8.44, 4.22, 2.11, and 1.05 pg/mL) were
prepared to investigate their cytotoxicities. As
shown in Figure 3, the resazurin dye reduction
assay revealed high cell viabilities (>80%) for
2A3-AuNCs. However, for MDA-MB-231 and MDA-
MB-468 cells with overexpressed CEACAMS6, the
cell viabilities decreased with the concentration
of 2A3-AuNCs. The results of cell viabilities of
2A3-AuNCs indicated that antibody of 2A3 on the
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Figure 4. Cell death assay of 2A3-AuNCs. Fluorescence images of 2A3-AuNCs incubated with Vero, MDA-MB-231, and MDA-
MB-468 cells for 120 min. The blue and green pseudocolors represent the fluorescent signals of total cells (stained with Hoechst
33342) and dead cells (stained with SYTOX green), respectively. The scale bars were Tmm.

surface of 2A3-AuNCs could target onto CEACAM6
overexpressed MDA-MB-231 and MDA-MB-468
cells and then inhibit the growth of MDA-MB-231
and MDA-MB-468 cells.

Investigation of cell death induced by 2A3-
AuNCs

To investigate the cell death, fluorescence
images of cells including Vero, MDA-MB-231, and
MDA-MB-468 cells were respectively examined
after incubation with 2A3-AuNCs for 120 min.
As shown in fluorescence images of Figure 4, the
total numbers of Vero, MDA-MB-231, and MDA-
MB-468 cells revealed no significant difference.
Moreover, after incubation with 2A3-AuNCs, no
significant death of Vero cells was observed in
the fluorescence image. However, for MDA-MB-231
and MDA-MB-468 cells, drastic cell deaths were
observed after incubation with 2A3-AuNCs. The
results of fluorescence images indicated that

the ligand of 2A3 on the surface of 2A3-AuNCs
could inhibit the growths of cancer cells with
CEACAMSG6 overexpressed MDA-MB-231 and MDA-
MB-468 cells.

Discussion

The treatment of cancer is an urgent issue
for biomedical applications based on metal
nanoclusters. Herein, the 2A3-AuNCs were
synthesized to inhibit cancer cells by the facile
hydrothermal approach. The structural and
optical properties of 2A3-AuNCs confirmed the
successful preparation of fluorescent 2A3-AuNCs
with the roughly spherical shape and the size of
2.35 nm by the facile hydrothermal approach.
The cell viability assay demonstrated that 2A3-
AuNCs could inhibit the growths of cancer cells,
including MDA-MB-231 and MDA-MB-468 breast
cells. The fluorescence images also indicated
that 2A3-AuNCs could inhibit the growths of
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cancer cells of MDA-MB-231 and MDA-MB-468
breast cells. Based on the similar results of cell
viability assay and fluorescence imaging, the
surface ligand of 2A3 antibody on 2A3-AuNCs
exhibited significant inhibition of cancer cells with
CEACAMBG6 overexpressed, including MDA-MB-231
and MDA-MB-468 breast cells. For further clinical
application, the in vivo studies of 2A3-AuNCs
are still needed in the future.

Conclusion

In conclusion, fluorescent 2A3-AuNCs were
successfully prepared by the facile hydrothermal
approach. The optical and structural characterizations
of 2A3-AuNCs were demonstrated by TEM image
and UV-Vis spectrum. The results of the cell viability
assay confirmed that 2A3-AuNCs revealed cancer
cell inhibition for CEACAM6 overexpressed MDA-
MB-231 and MDA-MB-468 cells. The results of
fluorescence imaging also indicated that the 2A3
antibody on the surface of 2A3-AuNCs showed
significant cancer cell inhibition for CEACAM6
overexpressed MDA-MB-231 and MDA-MB-468
cells. Overall, our studies showed that 2A3-AuNCs
could be a promising fluorescent probe for the
detection and therapy in the cancer cell.
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