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ABSTRACT

Background: Inflammation plays a key role in the progression of many chronic diseases. As a country with rich 
biodiversity, Indonesia offers numerous phytochemicals with potential for drug development, including catechin, 
a natural compound with anti-inflammatory properties.

Objective: This study aimed to identify potential anti-inflammatory targets of catechin and evaluate its inhibitory 
potency through molecular docking simulations.

Methods: Data acquisition and refinement were conducted using the NCBI, STRING, and STITCH databases, with 
intersections identified through Venn diagrams. Molecular docking was performed using AutoDockTools 1.5.6, and 
interactions were visualized with BIOVIA Discovery Studio.

Results: Bioinformatics analysis predicted that catechin inhibits three pro-inflammatory proteins: COX-2, HSP90, 
and IL-2. Catechin’s inhibitory potential was indicated by negative binding energies and interactions with amino 
acid residues critical for target protein activity. Among the targets, IL-2 exhibited the lowest binding energy with 
catechin (-5.12 kcal/mol), suggesting it as the primary anti-inflammatory target. However, catechin’s binding affinity 
was lower than that of the native ligand (-11.78 kcal/mol).

Conclusion: IL-2 is predicted to be the primary target for catechin’s anti-inflammatory activity. Structural modifications 
of catechin are recommended to enhance its binding affinity and therapeutic potential.
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Introduction
Inflammation is a protective response to invading 

pathogens or tissue damage, characterized by redness, 
swelling, pain, heat, and loss of tissue function. It 
involves three primary signaling pathways—NF-κB, 
MAPK, and JAK-STAT—which trigger the release of 
inflammatory markers and initiate cellular responses. 
While inflammation is essential for immune defense, 
excessive or prolonged inflammation can contribute 
to the pathogenesis of chronic diseases such as 
cancer, arthritis, diabetes, inflammatory bowel 
disease, and cardiovascular disease [1].

The treatment of inflammation typically involves 
steroidal and non-steroidal anti-inflammatory drugs 

(NSAIDs). These medications act through various 
mechanisms, including the inhibition of NF-κB 
signaling [2] and the suppression of inflammatory 
markers such as prostaglandins [3,4]. However, 
concerns about side effects and drug resistance 
have spurred interest in alternative treatments, 
particularly natural products.

Natural compounds and their structural analogs 
have been pivotal in drug discovery. Indonesia, with 
its rich biodiversity encompassing approximately 
30,000 plant species [5], offers an abundance 
of plant-derived materials that have been used 
empirically in pharmacotherapy. Among these, 
catechin—a polyphenolic compound—stands out 
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for its anti-inflammatory potential. Catechins 
are secondary metabolites characterized by two 
aromatic rings and multiple hydroxyl groups (Figure 
1). Subtypes include catechin, epicatechin (EC), 
epigallocatechin (EGC), and epigallocatechin-3-O-
gallate (EGCG) [6]. Catechins are found in high 
concentrations in gambir (Uncaria gambir) (73.3%) 
compared to tea leaves (30–40%) [7].

While most research has focused on the 
pharmacological actions of EGCG, fewer studies 
have specifically investigated catechin. Existing 
evidence suggests that catechin exhibits notable 
anti-inflammatory effects. For instance, an 
in vivo study reported that catechin hydrate 
attenuates inflammation in benzo(a)pyrene-
induced lung damage in mice [11]. Similarly, 
catechin demonstrated therapeutic effects on 
streptozotocin-induced diabetic nephropathy in 
mice by downregulating inflammatory markers 
such as NLRP3, ASC, AIM2, caspase-1, IL-1β, 
and IL-18 [12]. An in vitro study revealed that 
catechin modulates pro-inflammatory and anti-
inflammatory cytokines through the NF-κB, 
AMPK, FOXO3a, and SIRT1 pathways in 3T3-L1 
adipocytes [13]. Additionally, network pharmacology 
and metabolomic studies suggest that catechin 
mediates ferroptosis in macrophages to exert 
anti-inflammatory effects [14].

Molecular docking studies have predicted 
several direct anti-inflammatory targets of catechin, 
including TNF-α, IL-1β, IL-6, iNOS, COX-2, MPO, and 
PPAR-γ receptors [15–17]. Despite these findings, no 
comprehensive study has systematically examined 
the potential anti-inflammatory targets of catechin. 
Given the complexity of inflammatory pathways 
and mediators involved in inflammation-related 
diseases [1,16,17], further exploration of catechin’s 
anti-inflammatory targets is warranted.

This study aims to identify and refine potential 
anti-inflammatory targets of catechin using 
bioinformatics approaches. Databases such as 
NCBI, STITCH, and STRING were utilized alongside 
molecular docking and amino acid interaction 
visualization to predict catechin’s mechanism of 
action. The findings from this study provide valuable 

preliminary data to guide future in vitro and in 
vivo experiments, facilitating the development of 
catechin as a potential anti-inflammatory therapeutic 
agent.

Figure 1. Chemical structure of catechin

Methods
Data acquisition and refinement

Bioinformatics analyses were conducted to 
identify inflammatory regulatory proteins and 
catechin target proteins. Inflammatory regulatory 
proteins were retrieved from the NCBI gene database 
(https://www.ncbi.nlm.nih.gov/) [18] using the 
keyword “inflammation” and filtered for Homo 
sapiens. Catechin’s direct target proteins were 
identified using the STITCH database (http://
stitch.embl.de/), and indirect target proteins of 
the top 10 direct targets were identified using the 
STRING database (https://string-db.org/) with a 
minimum interaction score of 0.4 and no more 
than 10 interactions in the first shell.

The intersections between inflammatory 
regulatory proteins and catechin’s direct and 
indirect target proteins were determined using 
a Venn diagram generated by Venny 2.1 (https://
bioinfogp.cnb.csic.es/tools/venny/). The resulting 
protein-protein interaction network (PPIN) was 
constructed using the STRING database and 
analyzed for the contextual roles of the proteins, 
particularly their involvement in anti-inflammatory 
processes. The PPIN was exported in TSV format 
and imported into Cytoscape software for further 
analysis. The CytoHubba plugin in Cytoscape ranked 
the proteins based on the “Degree” topological 
analysis method to identify key catechin anti-
inflammatory targets [19–22].
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Preparation of ligand
The three-dimensional structure of catechin 

(ChemSpider ID 8711) was downloaded from the 
ChemSpider database (http://www.chemspider.
com/) in MOL format. The structure was optimized 
using GaussView 6.0 software [23] with Density 
Functional Theory (DFT) and a basis set of 
B3LYP/6-31G [24].

Preparation of target proteins
Crystal structures of target proteins identified 

through bioinformatics analysis were obtained from 
the PDB database (http://www.rscb.org/pdb/). 
Inclusion criteria for protein selection included 
structures with no mutations, resolution < 3 Å� , 
derived from Homo sapiens, and bound to a small 
molecule inhibitor. Protein structures were prepared 
in AutoDockTools by removing water molecules, 
adding hydrogen atoms, and applying Kollman 
and Gasteiger charges.

Molecular docking of cathecin to target proteins
Molecular docking was performed using 

AutoDockTools 1.5.6 software. The docking method 
and grid box size were validated by re-docking 
the native ligand to the target protein to confirm 
alignment with the binding site of the native ligand. 
Validation was considered successful if the Root 
Mean Square Deviation (RMSD) was ≤ 2 Å�  [25].

Following validation, catechin was docked 
to each target protein, with the grid box size 
adjusted to match the validated parameters. Binding 
energy between catechin and target proteins was 
calculated. The interactions between catechin and 
potential target proteins were visualized using 
BIOVIA Discovery Studio 2021 [26] by selecting 
the “Ligand Interaction” menu.

Results 
Bioinformatics studies

Bioinformatics analysis was conducted to 
identify the molecular targets of catechins in 
inhibiting inflammation. A search of inflammatory 
regulatory genes in the NCBI database identified 

2,604 human (Homo sapiens) genes associated 
with inflammatory regulation, as supported by 
research articles archived in the database. The 
STITCH database query for direct catechin target 
proteins yielded 10 proteins: NOS3, NOS1, IL-6, 
COX-2, NOS2, DNMT1, HMOX1, SLC47A1, APOB, 
and PON1. These 10 proteins were subsequently 
used to retrieve indirect target proteins from the 
STRING database, with each direct target generating 
10 indirect target proteins.

Figure 2. Venn diagram of catechin inflammatory regulatory 
genes

Figure 3. Protein-protein interaction network (PPIN) of catechin 
potential anti-inflammatory targets
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Using the Venn Diagram tool (Venny 2.1), 10 
direct target proteins, 100 indirect target proteins, 
and 2,604 inflammatory regulatory genes were 
analyzed to determine intersecting proteins. Figure 
2 shows that 51 proteins are predicted as the target 
of catechin in inhibiting inflammation, comprising 
9 direct target proteins (APOB, DNMT1, HMOX1, 
IL-6, NOS1, NOS2, NOS3, PON1, and COX-2) and 
42 indirect target proteins. A protein-protein 
interaction network (PPIN) of these 51 proteins 
was generated using the STRING website (Figure 3).

The top 20 proteins were selected based on 
their number of interactions (degree scores) in 
the PPIN, including 6 direct target proteins (APOB, 
HMOX1, IL-6, NOS2, NOS3, and COX-2) and 14 
indirect target proteins. The PPIN for these top 
20 proteins is presented in Figure 4, and their 
degree scores are listed in Table 1.

Among the top 20 proteins, 9 were associated 
with anti-inflammatory functions (IL10, TP53, CXCL8, 
NOS3, HMOX1, SCARB1, CLU, APOB, and NFE2L2), 
while 11 exhibited pro-inflammatory roles (IL1β, 
AKT1, COX-2, APOE, HSP90α, HSP90β, JAK2, IL-2, 
APOA1, and NOS2). Crystallographic structures 
meeting the criteria of no mutations, resolution 
< 3 Å� , and binding to inhibitory molecules were 
available for 7 pro-inflammatory proteins (AKT1, 
COX-2, HSP90α, HSP90β, JAK2, IL-2, and NOS2).

Molecular docking
The docking procedure was validated for all 

selected proteins by re-docking their native ligands. 

The Root Mean Square Deviation (RMSD) values 
were ≤ 2 Å� , confirming the accuracy of the docking 
protocol. The grid box size and RMSD values are 
detailed in Table 2.

Catechin exhibited negative binding energies 
for all tested proteins except NOS2, indicating 
strong binding affinities. The binding energies 
are summarized in Table 3. Visualizations of 
catechin or native ligand interactions with amino 
acid residues in pro-inflammatory proteins are 
presented in Figure 5.

Figure 4. Top 20 catechin target proteins ranked by degree 
Score using Cytoscape and Cytohubba plugin

Table 1. Ranking of target proteins based on degree score

Rank Protein name Degree score

1 IL6 43

2 IL1B 39

3 AKT1 35

4 IL10 32

5 TP53 31

6 COX-2 31

7 APOE 28

8 CXCL8 28

9 HSP90α 27

10 HMOX1 25

11 HSP90β 24

12 NOS3 23

13 JAK2 23

14 IL-2 21

15 SCARB1 21

16 NFE2L2 20

17 APOB 20

18 APOA1 18

19 CLU 17

20 NOS2 17

Table 2. Validation results of molecular docking for native 
ligands with target proteins

Protein (PDB ID)
Grid box RMSD

x y z

AKT1 (3O96) 23 44 34 1.03

COX-2 (5IKR) 24 16 22 0.6

HSP90α (2XJX) 20 22 36 1.4

HSP90β (3NMQ) 26 30 23 1.45

JAK2 (6VGL) 20 22 14 0.94

IL-2 (1PW6) 30 23 44 1.59

iNOS2 (4NOS) 12 13 10 0.68
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Discussion 
Our study provides additional insights on 

the molecular targets of catechin related to its 
anti-inflammatory effects. Previous research has 
identified potential direct anti-inflammatory targets 
of catechin, such as TNF-α, IL-1β, IL-6, iNOS, 
COX-2, MPO, and the PPAR-γ receptor [15,16]. In 
contrast, our study employs a different approach 
by identifying potential targets through the NCBI, 
STITCH, and STRING databases, with prioritization 
based on the degree score within a protein-protein 
interaction network (PPIN). Previous studies have 
demonstrated that the degree-based ranking is 
associated with gene essentiality. In other words, 
proteins with higher degrees are more likely to 
be essential [21,22]. 

Our study predicts that catechin did not bind 
to iNOS, as evidenced by the absence of negative 
binding energy (Table 3). This contradicts prior 
findings [15], which used the PDB ID 1NSI (an 
iNOS structure bound only to cofactors) [27]. In 
contrast, our study employed the PDB ID 4NOS, 
which includes a small molecule inhibitor, simulating 
catechin binding to the inhibitor’s active site 
alongside cofactors (heme and tetrahydrobiopterin) 
[28]. This methodological difference may explain 
the discrepancy.

Catechin’s predicted binding to other targets 
demonstrates significant potential for anti-
inflammatory activity. Catechin interacts with 
AKT1 at Trp80, a critical residue for the activity 
of allosteric inhibitor VIII, suggesting catechin could 
inhibit AKT-1 activation. AKT-1 is central to the PI3K/

Table 3. Molecular docking results of catechin with target proteins

Protein (PDB ID)
Binding energy (Kcal/mol)

Native ligand Catechin

AKT1 (3O96) Inhibitor VIII -12.81 -6.65

COX-2 (5IKR) Mefenamic acid -7.6 -1.7

HSP90α (2XJX) Onalespib -9.13 -5.49

HSP90β (3NMQ) EC144 -9.45 -4.82

JAK2 (6VGL) Ruxolitinib -8.11 -4.92

IL-2 (1PW6) FRB -11.78 -5.12

iNOS2 (4NOS) S-ethylisothiourea -2.99 221006.35

AKT pathway, which promotes pro-inflammatory 
cytokines and activates the NLRP3 inflammasome 
[29,30]. The crystal structure of AKT1 used in the 
molecular docking study is bound to an allosteric 
inhibitor, Inhibitor VIII. This inhibitor interacts with 
AKT1 at the junction of the PH domain and the 
N- and C-lobes of the kinase domain. A key ring-
stacking interaction between Inhibitor VIII and 
the residue Trp80 has been observed. Notably, 
alanine substitution at Trp80 in AKT1 abolishes the 
activity of Inhibitor VIII, highlighting the residue's 
critical role in binding [30]. Our study revealed that 
catechin also interacts with Trp80, suggesting that 
it may similarly inhibit AKT1 activation.

COX-2 plays a significant role in inflammation 
by producing prostaglandins [31]. In this study, 
the binding site of catechin to COX-2 was modeled 
based on the binding site of mefenamic acid to 
the enzyme. Both catechin and mefenamic acid 
form hydrogen bonds with Tyr385, a key catalytic 
residue essential for the cyclooxygenase reaction 
[32]. Additionally, catechin uniquely forms a bond 
with Arg120, a residue crucial for arachidonic acid 
binding, which is not observed with mefenamic 
acid [33]. These findings suggest that catechin 
may be more effective than mefenamic acid in 
inhibiting COX-2 activity, potentially enhancing 
its anti-inflammatory effects.

HSP90α and HSP90β are members of the HSP90 
chaperone protein family, which play critical roles 
in folding and activating proteins involved in 
inflammatory processes. Thus, targeting HSP90 for 
inhibition offers a potential therapeutic approach 
for inflammatory diseases [34,35]. The binding 
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Figure 5. Visualization of interactions between catechin or native ligands and amino acid residues of pro-inflammatory proteins

https://doi.org/10.32889/actabioina.199


7Investigation of catechin’s anti-inflammatory activity

Acta Biochimica Indonesiana 7(2):199 | https://doi.org/10.32889/actabioina.199

simulation of catechin to HSP90α was compared 
to the binding of onalespib, an HSP90α inhibitor. 
Onalespib interacts with Asp93, a residue critical for 
ADP binding and ATP hydrolysis, which is essential 
for HSP90 activity [35]. However, catechin showed no 
interaction with Asp93, suggesting that its binding 
to HSP90α may not inhibit its activation.

Both HSP90α and HSP90β are implicated in 
inflammation but have distinct roles. HSP90α is 
involved in vascular inflammation [36], while 
HSP90β regulates NLRP3 inflammasome activity 
[37]. Interaction studies revealed that ATP binding 
to HSP90β involves residues such as Ile110, Leu107, 
Phe138, and Asp93 [38]. Catechin demonstrated 
interactions with key residues, including Leu107, 
Phe138, and Ala55, suggesting that catechin binding 
may inhibit HSP90β activity.

JAK2 activation promotes inflammation by 
upregulating pro-inflammatory pathways [39]. 
Catechin’s binding to JAK2 was modeled based 
on the binding site of ruxolitinib, a JAK2 inhibitor. 
Ruxolitinib forms hydrogen bonds with Glu930 
and Leu932 and engages in van der Waals (VDW) 
interactions with Leu855 and residues in the P-loop 
[40]. Catechin similarly interacts with Leu855, 
but no interaction was predicted with Glu930 or 
Leu932, suggesting that catechin may not effectively 
inhibit JAK2 ATP binding.

IL-2 is a cytokine that drives inflammation by 
stimulating T, B, and NK cell proliferation and 
activation [41]. Phe42 and Glu62 are critical 
residues for IL-2’s interaction with its receptor 
IL-2Rα, while Leu72 acts as a gatekeeper residue 
requiring conformational changes for binding [42]. 
Catechin shares interactions with Phe42 and Glu62, 
similar to the native ligand FRB, indicating that 
catechin may inhibit IL-2 activity by preventing 
receptor interaction.

Molecular docking predicts that catechin has 
binding potential with several proteins, including 
AKT-1, COX-2, HSP90α, HSP90β, JAK2, and IL-2. 
However, amino acid interaction analysis using 
Biovia Discovery suggests that catechin binding 
may result in inhibition only for COX-2, HSP90β, 
and IL-2. While catechin’s interaction with COX-2 

supports findings from previous studies [15], this 
study reveals HSP90β and IL-2 as novel anti-
inflammatory targets for catechin.

Catechin demonstrated negative binding energy 
and specific interactions with amino acid residues 
essential for the activity of COX-2, HSP90β, and IL-2, 
suggesting inhibitory potential. Notably, no HSP90β 
inhibitors are currently FDA-approved, though several 
are in clinical trials [43]. In contrast, COX-2 and IL-2 
inhibitors, such as mefenamic acid and aldesleukin, 
are already FDA-approved for treating inflammatory 
conditions. Among these targets, catechin exhibited 
the lowest binding energy with IL-2, indicating 
it may be the most prominent anti-inflammatory 
target. However, catechin’s binding affinity to these 
proteins was lower than that of native ligands, 
emphasizing the need for structural modification 
of catechin to enhance its efficacy.

Conclusion
This study reveals that catechin’s anti-

inflammatory activity may be mediated through 
interactions with AKT-1, COX-2, IL-2, HSP90β, and 
JAK2, with potential inhibitory effects on COX-2, 
IL-2, and HSP90β. Despite promising findings, 
catechin’s binding affinity to these targets is lower 
than that of native ligands. Structural modification 
of catechin is recommended to optimize its anti-
inflammatory efficacy, paving the way for future 
preclinical and clinical investigations.
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