COMPUTATIONAL DESIGN OF ANCESTRAL AND CONSENSUS SEQUENCE OF APICAL MEMBRANE ANTIGEN 1 (AMA1) OF Plasmodium spp.

Rizky Nurdiansyah, Rahmat Azhari Kemal

Abstract


Background: It is important to design a malaria vaccine targeting all human malaria parasites as well as non-human primate parasites to eradicate malaria and prevent zoonotic malaria. Apical membrane antigen 1 (AMA1) protein is shared by human-infecting Plasmodium species. Ancestral sequence reconstruction (ASR) and consensus sequence construction on AMA1 might be able to overcome the antigenic distinction between those species.  

Objective: We aimed to computationally design the ancestral and consensus sequence of Plasmodium AMA1 protein and analyze the sequences for its putative immunogenicity.

Methods: We utilized bioinformatics software to computationally design ancestral and consensus sequences of AMA1 protein. AMA1 protein sequences of human-infecting Plasmodium and non-human primate Plasmodium were retrieved from PlasmoDB. ASR was designed using MEGA X while consensus was inferred using UGENE. Phylogenetic tree consisting of existing Plasmodium sequences and the ancestral sequence was constructed using IQTREE webserver and visualized with FigTree.

Results: Phylogenetic analysis showed that Plasmodium spp. were divided into 2 major groups, P. falciparum (Clade F) and non-falciparum (Clade NF) thus three ancestral and consensus sequences were designed based on each clade and both clades at once. Reconstructed ancestral sequences were located as sister branch for naturally occurring strains. On the contrary, consensus sequences are located within the branch of corresponding naturally occurring strains. Sequence analysis showed the presence of CD8+ T cell epitope in all computationally-designed sequences.

Conclusion: Ancestral and consensus AMA1 sequences are potential for further studies as a malaria vaccine candidate.


Full Text:

PDF

References


Vittor AY, Pan W, Gilman RH, Tielsch J, Glass G, Shields T, et al. Linking deforestation to malaria in the amazon: Characterization of the breeding habitat of the principal malaria vector, Anopheles darlingi. Am J Trop Med Hyg. 2013;10(1):54–6.

World Health Organization. World Malaria Report 2018 [Internet]. 2018. 1–210 p. Available from: https://www.who.int/malaria/publications/world-malaria-report-2018/en/

World Health Organization. Artemisinin resistance and artemisinin-based combination therapy efficacy [Internet]. World Health Organization. 2018. Available from: https://apps.who.int/iris/bitstream/handle/10665/274362/WHO-CDS-GMP-2018.18-eng.pdf?sequence=1&isAllowed=y

Noedl H, Se Y, Schaecher K, Smith BL, Socheat D, Fukuda MM. Evidence of artemisinin-resistant malaria in Western Cambodia. N Engl J Med. 2008;359(24):2619–20.

Amato R, Pearson RD, Almagro-Garcia J, Amaratunga C, Lim P, Suon S, et al. Origins of the current outbreak of multidrug-resistant malaria in southeast Asia: a retrospective genetic study. Lancet Infect Dis. 2018;18(3):337–45.

Millar SB, Cox-Singh J. Human infections with Plasmodium knowlesi-zoonotic malaria. Clin Microbiol Infect. 2015;21(7):640–8.

Setiadi W, Sudoyo H, Trimarsanto H, Sihite BA, Saragih RJ, Juliawaty R, et al. A zoonotic human infection with simian malaria, Plasmodium knowlesi, in Central Kalimantan, Indonesia. Malar J. 2016;15(1):1–6.

Ramasamy R. Zoonotic malaria - global overview and research and policy needs. Front Public Heal. 2014;2(AUG):1–7.

Anstey NM, Grigg MJ. Zoonotic malaria: The better you look, the more you find. J Infect Dis. 2019;219(5):679–81.

Straub K, Merkl R. Ancestral sequence reconstruction as a tool for the elucidation of a stepwise evolutionary adaptation. In: Cycle. 2019:171–82.

Sternke M, Tripp KW, Barrick D. Consensus sequence design as a general strategy to create hyperstable, biologically active proteins. Proc Natl Acad Sci U S A. 2019;166(23):11275–84.

Doria-Rose NA, Learn GH, Rodrigo AG, Nickle DC, Mahalanabis M, Hensel MT, et al. Human immunodeficiency virus type 1 subtype B ancestral envelope protein is functional and elicits neutralizing antibodies in rabbits similar to those elicited by a circulating subtype B envelope. J Virol. 2005;79(17):11214–24.

Ross HA, Nickle DC, Liu Y, Heath L, Jensen MA, Rodrigo AG, et al. Sources of variation in ancestral sequence reconstruction for HIV-1 envelope genes. Evol Bioinforma. 2006;2:117693430600200.

Kothe DL, Li Y, Decker JM, Bibollet-Ruche F, Zammit KP, Salazar MG, et al. Ancestral and consensus envelope immunogens for HIV-1 subtype C. Virology. 2006;352(2):438–49.

Nurdiansyah R, Ramanto KN, Jessica P. Investigating the characteristics and evolution of apical membrane antigen 1 (AMA1) of Plasmodium sp. using phylogenetic approach in searching for drug candidate. In Jakarta: International Conference on Biotechnology and Life Sciences; 2019.

Jahangiri F, Jalallou N, Ebrahimi M. Analysis of apical membrane antigen (AMA)-1 characteristics using bioinformatics tools in order to vaccine design against Plasmodium vivax. Infect Genet Evol. 2019;71(March):224–31.

Coley AM, Parisi K, Masciantonio R, Hoeck J, Casey JL, Murphy VJ, et al. The most polymorphic residue on Plasmodium falciparum apical membrane antigen 1 determines binding of an invasion-inhibitory antibody. Infect Immun. 2006;74(5):2628–36.

Mitchell GH, Thomas AW, Margos G, Dluzewski AR, Bannister LH. Apical membrane antigen 1, a major malaria vaccine candidate, mediates the close attachment of invasive merozoites to host red blood cells. Infect Immun. 2004;72(1):154–8.

Bryan D, Silva N, Rigsby P, Dougall T, Corran P, Bowyer PW, et al. The establishment of a WHO Reference Reagent for anti-malaria (Plasmodium falciparum) human serum. Malar J. 2017;16(1):1–10.

Drew DR, Sanders PR, Weiss G, Gilson PR, Crabb BS, Beeson JG. Functional conservation of the AMA1 host-cell invasion ligand between P. falciparum and P. vivax: A novel platform to accelerate vaccine and drug development. J Infect Dis. 2018;217(3):498–503.

Triglia T, Healer J, Caruana SR, Hodder AN, Anders RF, Crabb BS, et al. Apical membrane antigen 1 plays a central role in erythrocyte invasion by Plasmodium species. Mol Microbiol. 2000;38(4):706–18.

Doumbo OK, Niaré K, Healy SA, Sagara I, Duffy PE. Malaria transmission-blocking vaccines: Present status and future perspectives. In: Towards malaria elimination - A Leap Forward. InTech. 2018:364–84.

Heide J, Vaughan KC, Sette A, Jacobs T, Zur Wiesch JS. Comprehensive review of human plasmodium falciparum-specific CD8+ T cell epitopes. Front Immunol. 2019;10(MAR):1–23.

Drew DR, Hodder AN, Wilson DW, Foley M, Mueller I, Siba PM, et al. Defining the antigenic diversity of plasmodium falciparum apical membrane antigen 1 and the requirements for a multi-allele vaccine against malaria. PLoS One. 2012;7(12).

Takala SL, Coulibaly D, Thera M a, Batchelor AH, Cummings MP, Escalante A a, et al. Extreme polymorphism in a vaccine antigen and risk of clinical malaria: Implications for vaccine development. Sci transl med. 2009;1(2):2ra5-2ra5.

Hall BG. Building phylogenetic trees from molecular data with MEGA. Mol Biol Evol. 2013;30(5):1229–35.

Edgar RC. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792–7.

Trifinopoulos J, Nguyen LT, von Haeseler A, Minh BQ. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016;44(W1):W232–5.

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35(6):1547–9.

Okonechnikov K, Golosova O, Fursov M, Varlamov A, Vaskin Y, Efremov I, et al. Unipro UGENE: A unified bioinformatics toolkit. Bioinformatics. 2012;28(8):1166–7.

Doytchinova IA, Flower DR. Bioinformatic approach for identifying parasite and fungal candidate subunit vaccines. Open Vaccine J. 2010;3(1):22–6.

Collins CR, Withers-Martinez C, Bentley GA, Batchelor AH, Thomas AW, Blackman MJ. Fine mapping of an epitope recognized by an invasion-inhibitory monoclonal antibody on the malaria vaccine candidate apical membrane antigen 1. J Biol Chem. 2007;282(10):7431–41.

Bueno LL, Lobo FP, Morais CG, Mourão LC, de Ávila RAM, Soares IS, et al. Identification of a highly antigenic linear b cell epitope within plasmodium vivax apical membrane antigen 1 (AMA-1). PLoS One. 2011;6(6).

Galaway F, Yu R, Constantinou A, Prugnolle F, Wright GJ. Resurrection of the ancestral RH5 invasion ligand provides a molecular explanation for the origin of P. falciparum malaria in humans. PLoS Biol. 2019;17(10):e3000490.

Proietti C, Doolan DL. The case for a rational genome-based vaccine against malaria. Front Microbiol. 2015;5(DEC):1–19.

Conway DJ. Paths to a malaria vaccine illuminated by parasite genomics. Trends Genet. 2015;31(2):97–107

Villard V, Agak GW, Frank G, Jafarshad A, Servis C, Nébié I, et al. Rapid identification of malaria vaccine candidates based on α-helical coiled coil protein motif. PLoS One. 2007;2(7).

Tham WH, Beeson JG, Rayner JC. Plasmodium vivax vaccine research – we’ve only just begun. Int J Parasitol. 2017;47(2–3):111–8.

Ouattara A, Mu J, Takala-Harrison S, Saye R, Sagara I, Dicko A, et al. Lack of allele-specific efficacy of a bivalent AMA1 malaria vaccine. Malar J. 2010;9(1):1–13.

Bejon P, White MT, Olotu A, Bojang K, Lusingu JPA, Salim N, et al. Efficacy of RTS,S malaria vaccines: Individual-participant pooled analysis of phase 2 data. Lancet Infect Dis. 2013;13(4):319–27.

Crompton PD, Moebius J, Portugal S, Waisberg M, Hart G, Garver LS, et al. Malaria immunity in man and mosquito: Insights into unsolved mysteries of a deadly infectious disease. Annu Rev Immunol. 2014;32(1):157–87.

Riglar DT, Richard D, Wilson DW, Boyle MJ, Dekiwadia C, Turnbull L, et al. Super-resolution dissection of coordinated events during malaria parasite invasion of the human erythrocyte. Cell Host Microbe. 2011;9(1):9–20.

Schwenk R, Banania G, Epstein J, Kim Y, Peters B, Belmonte M, et al. Ex vivo tetramer staining and cell surface phenotyping for early activation markers CD38 and HLA-DR to enumerate and characterize malaria antigen-specific CD8+ T-cells induced in human volunteers immunized with a Plasmodium falciparum adenovirus-vectored. Malar J. 2013;12(1):1

Sedegah M, Kim Y, Peters B, McGrath S, Ganeshan H, Lejano J, et al. Identification and localization of minimal MHC-restricted CD8+ T cell epitopes within the Plasmodium falciparum AMA1 protein. Malar J. 2010;9(1):1–16.

Remarque EJ, Faber BW, Kocken CHM, Thomas AW. Apical membrane antigen 1: A malaria vaccine candidate in review. Trends Parasitol. 2008;24(2):74–84.




DOI: https://doi.org/10.32889/actabioina.v2i2.40

Article Metrics

Abstract view : 127 times
PDF - 44 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

 

Lisensi Creative Commons

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.